public individuo function_mutate(individuo ind, individuo[] Poblation, IMG picture, int umbral, int umbral_d)
        {//mejorar
            individuo copy = ind;
            int       pivot = 0, test = 0;
            bool      op = true;

            while (op)//Mutar en X
            {
                pivot            = ale.Next(10);
                copy.Xbin[pivot] = (copy.Xbin[pivot] == 0) ? 1 : 0;
                test             = BinToDeci(copy.Xbin);
                op = (test < picture.getW()) ? false : true;
            }
            op = true;
            while (op)//Mutar en Y
            {
                pivot            = ale.Next(10);
                copy.Ybin[pivot] = (copy.Ybin[pivot] == 0) ? 1 : 0;
                test             = BinToDeci(copy.Ybin);
                op = (test < picture.getH()) ? false : true;
            }
            copy.X         = BinToDeci(copy.Xbin);
            copy.Y         = BinToDeci(copy.Ybin);
            copy.Value     = picture.gray2(copy, umbral);
            copy.Xdist     = Xdistant(Poblation, copy, umbral_d);
            copy.Phenotype = copy.Value + copy.Xdist;
            return((copy.Phenotype >= ind.Phenotype) ? copy : ind);
        }
Ejemplo n.º 2
0
        public int gray2(individuo ind, int umbral) //preguintarle mayor o menor
        {
            Color color = (Img.GetPixel(ind.X, ind.Y));
            byte  gris  = (byte)(color.R * 0.3f + color.G * 0.59f + color.B * 0.11f);

            return((gris >= umbral) ? 1 : 0); //Cambiarlo a <=
        }
        public int Xdistant(individuo[] all, individuo indCurrent, int umbral_d)//Calcula Xdistante
        {
            int acum = 0;

            for (int i = 0; i < all.Length; i++)
            {
                double raiz = Math.Sqrt(Math.Pow((indCurrent.X - all[i].X), 2) + Math.Pow((indCurrent.Y - all[i].Y), 2));
                acum += (raiz <= umbral_d) ? 1 : 0;
            }
            return((acum == 2) ? 1 : 0);
        }
 public individuo[] CrearPoblacion(int W, int H, int Size, int umbral, IMG picture)//Crea la poblacion inicial
 {
     ind = new individuo[Size];
     for (int n = 0; n < Size; n++)
     {
         ind[n]         = new individuo();
         ind[n].X       = ale.Next(0, W);
         ind[n].Y       = ale.Next(0, H);
         ind[n].Evolved = false;
         ind[n].Xbin    = DeciToBin(ind[n].X);
         ind[n].Ybin    = DeciToBin(ind[n].Y);
         ind[n].Value   = picture.gray2(ind[n], umbral);
     }
     for (int n = 0; n < Size; n++)
     {
         ind[n].Xdist     = Xdistant(ind, ind[n], umbral);
         ind[n].Phenotype = ind[n].Xdist + ind[n].Value;
     }
     return(ind);
 }
        public individuo[] function_crossing(int ind1, int ind2, individuo[] poblation, int umbral_d, IMG picture, int umbral)
        {
            int pivot = 0, test1 = 0, test2 = 0, max = 0;

            int[] indX   = new int[10], ind2X = new int[10], indY = new int[10], ind2Y = new int[10], temp = new int[10], Phenotypes = new int[4];
            bool  option = true;

            while (option)            //violada en x
            {
                pivot        = ale.Next(10);
                indX         = poblation[ind1].Xbin;
                ind2X        = poblation[ind2].Xbin;
                temp         = indX;
                indX[pivot]  = ind2X[pivot];
                ind2X[pivot] = temp[pivot];
                test1        = BinToDeci(indX);
                test2        = BinToDeci(ind2X);
                option       = (test1 < picture.getW()) && (test2 < picture.getW()) ? false : true;
            }
            option = true;
            while (option)            //violada en y
            {
                pivot        = ale.Next(10);
                indY         = poblation[ind1].Ybin;
                ind2Y        = poblation[ind2].Ybin;
                temp         = indY;
                indY[pivot]  = ind2Y[pivot];
                ind2Y[pivot] = temp[pivot];
                test1        = BinToDeci(indY);
                test2        = BinToDeci(ind2Y);
                option       = (test1 < picture.getH()) && (test2 < picture.getH()) ? false : true;
            } //Determinacion del fenotipo de los violados
            individuo son1 = new individuo(), son2 = new individuo();

            son1.Xbin      = indX;
            son1.Ybin      = indY;
            son1.X         = BinToDeci(son1.Xbin);
            son1.Y         = BinToDeci(son1.Ybin);
            son1.Xdist     = Xdistant(poblation, son1, umbral_d);
            son1.Value     = picture.gray2(son1, umbral);
            son1.Phenotype = son1.Xdist + son1.Value;
            son2.Xbin      = ind2X;
            son2.Ybin      = ind2Y;
            son2.X         = BinToDeci(son2.Xbin);
            son2.Y         = BinToDeci(son2.Ybin);
            son2.Xdist     = Xdistant(poblation, son2, umbral_d);
            son2.Value     = picture.gray2(son2, umbral);
            son2.Phenotype = son2.Xdist + son2.Value;
            List <individuo> poblationFinal = new List <individuo>();

            Phenotypes[0] = poblation[ind1].Phenotype;
            Phenotypes[1] = poblation[ind2].Phenotype;
            Phenotypes[2] = son1.Phenotype;
            Phenotypes[3] = son2.Phenotype;
            for (int i = 0; i < Phenotypes.Length / 2; i++)
            {
                max = getBest(Phenotypes);
                switch (max)
                {
                case 0:
                    poblationFinal.Add(poblation[ind1]);
                    break;

                case 1:
                    poblationFinal.Add(poblation[ind2]);
                    break;

                case 2:
                    poblationFinal.Add(son1);
                    break;

                case 3:
                    poblationFinal.Add(son2);
                    break;
                }
                Phenotypes[max] = 0;
            }
            return(poblationFinal.ToArray()); //convertir list to array*/
        }