Ejemplo n.º 1
0
 private Objects.ExcelGroup[][] BuildGroups(double Enclosing)
 {
     Objects.ExcelGroup[][] excelGroupsArray = new Objects.ExcelGroup[inputHumen[0].NormalizedRanges.Length][];
     for (int column = 0; column < inputHumen[0].NormalizedRanges.Length; column++)
     {
         Objects.ExcelGroup[] excelGroups = new Objects.ExcelGroup[analizedTuplesArray[column].analizedGroups.Length];
         for (int group = 0; group < analizedTuplesArray[column].analizedGroups.Length; group++)
         {
             Objects.AnalizedGroup currentAnalizedGroup = analizedTuplesArray[column].analizedGroups[group];
             excelGroups[group] = new Objects.ExcelGroup(currentAnalizedGroup.percent, currentAnalizedGroup.mediana, group);
             double[] Squares = new double[currentAnalizedGroup.participatns.Length];
             double[] Qubes   = new double[currentAnalizedGroup.participatns.Length];
             for (int part = 0; part < currentAnalizedGroup.participatns.Length; part++)
             {
                 Squares[part] = Math.Pow(currentAnalizedGroup.participatns[part] - currentAnalizedGroup.mediana, 2);
                 Qubes[part]   = Math.Pow(currentAnalizedGroup.participatns[part] - currentAnalizedGroup.mediana, 3);
             }
             excelGroups[group].standartDerivation = Math.Sqrt(Squares.Sum() / (Squares.Length - 1));
             excelGroups[group].min       = currentAnalizedGroup.min;
             excelGroups[group].max       = currentAnalizedGroup.max;
             excelGroups[group].count     = currentAnalizedGroup.count;
             excelGroups[group].assymetry = Qubes.Sum() / (Squares.Length * Math.Pow(currentAnalizedGroup.dispersia, 3));
             excelGroups[group].vars      = currentAnalizedGroup.participatns;
             if (group < analizedTuplesArray[column].analizedGroups.Length - 1)
             {
                 Objects.AnalizedGroup nextAnalizedGroup = analizedTuplesArray[column].analizedGroups[group + 1];
                 double Mean1    = currentAnalizedGroup.participatns.Average();
                 double Mean2    = nextAnalizedGroup.participatns.Average();
                 double Mediana1 = currentAnalizedGroup.mediana;
                 double Mediana2 = nextAnalizedGroup.mediana;
                 double NormAll  = analizedTuplesArray[column].max - analizedTuplesArray[column].min;
                 double Min1     = currentAnalizedGroup.min;
                 double Max1     = currentAnalizedGroup.max;
                 double Min2     = nextAnalizedGroup.min;
                 double Max2     = nextAnalizedGroup.max;
                 excelGroups[group].closingTo = CoeffCounter(Mean1, Mean2, Mediana1, Mediana2, NormAll, Min1, Max1, Min2, Max2);
             }
         }
         excelGroups = Encloser(excelGroups, Enclosing, column);
         excelGroupsArray[column] = excelGroups;
     }
     this.builded = excelGroupsArray;
     return(excelGroupsArray);
 }
Ejemplo n.º 2
0
        public Objects.AnalizedTuple DAUResearcher(int column, double Entropy, Objects.AnalizedTuple analizedTuple)
        {
            DenseAbsorbsUndense          denseAbsorbsUndense = new DenseAbsorbsUndense();
            List <Objects.AnalizedGroup> analizedGroupsList  = analizedTuple.analizedGroups.ToList();

            for (int i = 0; i < analizedTuple.analizedGroups.Length; i++)
            {
                if (analizedTuple.analizedGroups[i].dispersia > minDispers)
                {
                    Objects.AnalizedTuple analizedTupleNew = denseAbsorbsUndense.Worker(analizedTuple.analizedGroups[i].participatns, column, Entropy);
                    analizedGroupsList.Remove(analizedTuple.analizedGroups[i]);
                    analizedGroupsList.AddRange(analizedTupleNew.analizedGroups);
                }
            }
            Objects.AnalizedGroup[] analizedGroupsArray = new Objects.AnalizedGroup[analizedGroupsList.Count];
            analizedGroupsArray          = analizedGroupsList.OrderBy(x => x.mediana).ToArray();
            analizedTuple.groupsCount    = analizedGroupsArray.Length;
            analizedTuple.analizedGroups = analizedGroupsArray;
            return(analizedTuple);
        }
Ejemplo n.º 3
0
        public Objects.AnalizedTuple Worker(double[] NonSortedArrayDouble, int col, double Entropy)
        {
            int lastrow = NonSortedArrayDouble.GetUpperBound(0) + 1;

            SortedArrayDouble = new double[lastrow];
            var sorted = NonSortedArrayDouble.OrderByDescending(x => x);
            int i      = lastrow - 1;

            foreach (var dbl in sorted)
            {
                SortedArrayDouble[i] = dbl;
                i--;
            }
            double        min              = SortedArrayDouble[0];
            double        max              = SortedArrayDouble[lastrow - 1];
            double        meanDensity      = 1.00 / SortedArrayDouble.Length; //(max - min) / SortedArrayDouble.Length;
            List <double> arrayListOfVars  = new List <double>();
            List <int>    arrayListOfTimes = new List <int>();

            for (int j = 0; j < SortedArrayDouble.Length; j++)
            {
                SortedArrayDouble[j] = (SortedArrayDouble[j] - min) / (max - min);
                if (j > 0 && SortedArrayDouble[j] == SortedArrayDouble[j - 1])
                {
                    arrayListOfTimes[arrayListOfTimes.Count - 1] = arrayListOfTimes[arrayListOfTimes.Count - 1] + 1;
                }
                else
                {
                    arrayListOfVars.Add(SortedArrayDouble[j]);
                    arrayListOfTimes.Add(1);
                }
            }
            SortedArrayDoubleBackup     = SortedArrayDouble;
            SortedArrayDouble           = arrayListOfVars.ToArray();
            koefficients                = arrayListOfTimes.ToArray();
            DistributionNumbered        = new double[3, SortedArrayDouble.Length]; //legacy method - 0 = Nothing;
            DistributionCharacteristics = new double[SortedArrayDouble.Length, 5]; // 0 = summOfBiDistances; 1 = Number; 2 = min; 3 = max; 4 = SummOfBistances ^ (-1);
            TypesOfFunction             = new bool[SortedArrayDouble.Length, 4];
            Array.Clear(TypesOfFunction, 0, TypesOfFunction.Length);
            Distances       = new double[SortedArrayDouble.Length, 4];
            Distances[0, 3] = SortedArrayDouble[1] - SortedArrayDouble[0];
            Distances[0, 1] = 0;
            Distances[SortedArrayDouble.Length - 1, 2] = 0;
            int distributionNumber = 0;

            for (int point = 1; point < SortedArrayDouble.Length - 1; point++)
            {
                Distances[point, 3] = SortedArrayDouble[point + 1] - SortedArrayDouble[point];
                Distances[point, 1] = Distances[point - 1, 3] / 2;
                Distances[point, 2] = Distances[point, 3] / 2;
                Distances[point, 0] = Distances[point, 1] + Distances[point, 2];
                if (point == 1)
                {
                    Distances[0, 2] = Distances[point, 1];
                    Distances[0, 0] = Distances[point, 1];
                }
                else if (point == SortedArrayDouble.Length - 2)
                {
                    Distances[point + 1, 1] = Distances[point, 2];
                    Distances[point + 1, 0] = Distances[point, 2];
                }
            }
            double hyper = 0;

            for (int biDistance = 0; biDistance < SortedArrayDouble.Length; biDistance++)
            {
                if (Distances[biDistance, 0] > meanDensity * 1.5)
                {
                    if (Distances[biDistance, 1] > Distances[biDistance, 2] * 1.5)
                    {
                        hyper = hyper + Distances[biDistance, 1] - Distances[biDistance, 2] * 1.5;
                    }
                    else if (Distances[biDistance, 2] > Distances[biDistance, 1] * 1.5)
                    {
                        hyper = hyper + Distances[biDistance, 2] - Distances[biDistance, 1] * 1.5;
                    }
                }
            }
            meanDensity = (1 - hyper) / SortedArrayDoubleBackup.Length;

            for (int point = 1; point < SortedArrayDouble.Length - 1; point++)
            {
                if (Distances[point - 1, 0] > Distances[point, 0] && Distances[point, 0] > Distances[point + 1, 0])
                {
                    TypesOfFunction[point, 0] = true;
                }
                else if (Distances[point - 1, 0] < Distances[point, 0] && Distances[point, 0] < Distances[point + 1, 0])
                {
                    TypesOfFunction[point, 1] = true;
                }
                else if (Distances[point - 1, 0] >= Distances[point, 0] && Distances[point, 0] < Distances[point + 1, 0])
                {
                    TypesOfFunction[point, 2] = true;
                }
                else if (Distances[point - 1, 0] > Distances[point, 0] && Distances[point, 0] == Distances[point + 1, 0])
                {
                    TypesOfFunction[point, 2] = true;
                }
                else if (Distances[point - 1, 0] <= Distances[point, 0] && Distances[point, 0] > Distances[point + 1, 0])
                {
                    TypesOfFunction[point, 3] = true;
                }
                else if (Distances[point - 1, 0] < Distances[point, 0] && Distances[point, 0] == Distances[point + 1, 0])
                {
                    TypesOfFunction[point, 3] = true;
                }
                else if (Distances[point - 1, 0] == Distances[point, 0] && Distances[point, 0] == Distances[point + 1, 0])
                {
                    TypesOfFunction[point, 2] = true;
                }
            }
            for (int point = 0; point < SortedArrayDouble.Length; point++)
            {
                if (TypesOfFunction[point, 3])
                {
                    if (Distances[point, 2] > Distances[point, 1])
                    {
                        DistributionNumbered[2, point] = distributionNumber;
                        distributionNumber++;
                    }
                    else
                    {
                        distributionNumber             = Convert.ToInt32(DistributionNumbered[2, point - 1]) + 1;
                        DistributionNumbered[2, point] = distributionNumber;
                    }
                }
                else
                {
                    DistributionNumbered[2, point] = distributionNumber;
                }
                DistributionNumbered[1, point] = SortedArrayDouble[point];
            }
            for (int currClass = 0; currClass < distributionNumber + 1; currClass++)
            {
                DistributionCharacteristics[currClass, 2] = 0;
                bool firstWas = false;
                for (int number = 0; number < SortedArrayDouble.Length; number++)
                {
                    if (DistributionNumbered[2, number] == currClass)
                    {
                        if (!firstWas && number > 0 && currClass > 0)
                        {
                            DistributionCharacteristics[currClass - 1, 3] = GetRealIndex(number - 1, koefficients);
                            DistributionCharacteristics[currClass, 2]     = GetRealIndex(number - 1, koefficients) + 1;
                            firstWas = true;
                        }
                        DistributionCharacteristics[currClass, 0] = DistributionCharacteristics[currClass, 0] + Distances[number, 0];
                        DistributionCharacteristics[currClass, 4] = DistributionCharacteristics[currClass, 4] + koefficients[number] / Distances[number, 0];
                        DistributionCharacteristics[currClass, 1] = DistributionCharacteristics[currClass, 1] + koefficients[number];
                    }
                    if (number == SortedArrayDouble.Length - 2)
                    {
                        DistributionCharacteristics[currClass, 3] = GetRealIndex(number + 1, koefficients);
                    }
                }
            }
            int previousNumberOfGroups = distributionNumber;
            int thisNumberOfGroups     = distributionNumber;

            do
            {
                List <UnityDistribution>      unityList      = new List <UnityDistribution>();
                List <NormalizedDistribution> normalizedList = new List <NormalizedDistribution>();
                for (int distribution = 1; distribution < previousNumberOfGroups; distribution++)
                {
                    double densityLeft = (DistributionCharacteristics[distribution - 1, 0] + DistributionCharacteristics[distribution, 0]) /
                                         (DistributionCharacteristics[distribution - 1, 1] + DistributionCharacteristics[distribution, 1]);
                    double densityRight = (DistributionCharacteristics[distribution + 1, 1] + DistributionCharacteristics[distribution, 1]) /
                                          (DistributionCharacteristics[distribution + 1, 0] + DistributionCharacteristics[distribution, 0]);
                    UnityDistribution unity = new UnityDistribution
                    {
                        Number         = distribution,
                        NumberOfPeople = Convert.ToInt32(DistributionCharacteristics[distribution, 1])
                    };
                    if (densityLeft <= densityRight)
                    {
                        if (densityLeft < meanDensity)
                        {
                            unity.LR   = densityLeft;
                            unity.Used = false;
                            unity.Up   = false;
                        }
                        else
                        {
                            unity.LR   = -1000;
                            unity.Used = false;
                            unity.Up   = false;
                        }
                    }
                    else if (densityLeft > densityRight)
                    {
                        if (densityRight < meanDensity)
                        {
                            unity.LR   = densityRight;
                            unity.Used = false;
                            unity.Up   = true;
                        }
                        else
                        {
                            unity.LR   = -1000;
                            unity.Used = false;
                            unity.Up   = false;
                        }
                    }
                    unity.Size = DistributionCharacteristics[distribution, 0];
                    unityList.Add(unity);
                }
                double densityRightF = (DistributionCharacteristics[1, 0] + DistributionCharacteristics[0, 0]) /
                                       (DistributionCharacteristics[1, 1] + DistributionCharacteristics[0, 1]);
                double densityLeftL = (DistributionCharacteristics[previousNumberOfGroups - 1, 0] + DistributionCharacteristics[previousNumberOfGroups, 0]) /
                                      (DistributionCharacteristics[previousNumberOfGroups - 1, 1] + DistributionCharacteristics[previousNumberOfGroups, 1]);
                densityRightF = densityRightF > meanDensity ? densityRightF : -1000;
                densityLeftL  = densityLeftL > meanDensity ? densityLeftL : -1000;
                UnityDistribution unity0 = new UnityDistribution
                {
                    LR             = densityRightF,
                    NumberOfPeople = Convert.ToInt32(DistributionCharacteristics[0, 1]),
                    Size           = DistributionCharacteristics[0, 0],
                    Up             = true,
                    Used           = false,
                    Number         = 0
                };
                UnityDistribution unity1 = new UnityDistribution
                {
                    LR             = densityLeftL,
                    NumberOfPeople = Convert.ToInt32(DistributionCharacteristics[previousNumberOfGroups, 1]),
                    Size           = DistributionCharacteristics[previousNumberOfGroups, 0],
                    Up             = false,
                    Used           = false,
                    Number         = previousNumberOfGroups
                };
                unityList.Add(unity0);
                unityList.Add(unity1);
                UnityDistribution[] unityDistributions = unityList.OrderBy(x => x.LR).ToArray();
                for (int distribution = 0; distribution < unityDistributions.Length; distribution++)
                {
                    NormalizedDistribution normalized = new NormalizedDistribution();
                    int firstIndex = unityDistributions[distribution].Number;
                    if (!unityDistributions[distribution].Used)
                    {
                        if (unityDistributions[distribution].LR != -1000)
                        {
                            int koeff       = unityDistributions[distribution].Up ? 1 : -1;
                            int secondIndex = Array.FindIndex(unityDistributions, (x) => (x.Number == firstIndex + koeff));
                            if (!unityDistributions[secondIndex].Used)
                            {
                                if (!unityDistributions[distribution].Up)
                                {
                                    normalized.SummOfBidistances   = DistributionCharacteristics[firstIndex - 1, 0] + DistributionCharacteristics[firstIndex, 0];
                                    normalized.NumberOfPeople      = Convert.ToInt32(DistributionCharacteristics[firstIndex - 1, 1] + DistributionCharacteristics[firstIndex, 1]);
                                    normalized.Minimum             = DistributionCharacteristics[firstIndex - 1, 2];
                                    normalized.Maximum             = DistributionCharacteristics[firstIndex, 3];
                                    normalized.AntisummBidistanses = DistributionCharacteristics[firstIndex - 1, 4] + DistributionCharacteristics[firstIndex, 4];
                                }
                                else
                                {
                                    normalized.SummOfBidistances   = DistributionCharacteristics[firstIndex + 1, 0] + DistributionCharacteristics[firstIndex, 0];
                                    normalized.NumberOfPeople      = Convert.ToInt32(DistributionCharacteristics[firstIndex + 1, 1] + DistributionCharacteristics[firstIndex, 1]);
                                    normalized.Minimum             = DistributionCharacteristics[firstIndex, 2];
                                    normalized.Maximum             = DistributionCharacteristics[firstIndex + 1, 3];
                                    normalized.AntisummBidistanses = DistributionCharacteristics[firstIndex + 1, 4] + DistributionCharacteristics[firstIndex, 4];
                                }
                                unityDistributions[secondIndex].Used    = true;
                                unityDistributions[distribution].Used   = true;
                                unityDistributions[secondIndex].WasSeen = false;
                                normalizedList.Add(normalized);
                            }
                            else
                            {
                                unityDistributions[distribution].WasSeen = true;
                            }
                        }
                        else
                        {
                            normalized.SummOfBidistances          = DistributionCharacteristics[firstIndex, 0];
                            normalized.NumberOfPeople             = Convert.ToInt32(DistributionCharacteristics[firstIndex, 1]);
                            normalized.Minimum                    = DistributionCharacteristics[firstIndex, 2];
                            normalized.Maximum                    = DistributionCharacteristics[firstIndex, 3];
                            normalized.AntisummBidistanses        = DistributionCharacteristics[firstIndex, 4];
                            unityDistributions[distribution].Used = true;
                            if (normalized.SummOfBidistances != 0)
                            {
                                normalizedList.Add(normalized);
                            }
                        }
                    }
                }
                for (int distribution = 0; distribution < unityDistributions.Length; distribution++)
                {
                    NormalizedDistribution normalized = new NormalizedDistribution();
                    int firstIndex = unityDistributions[distribution].Number;
                    if (!unityDistributions[distribution].Used && unityDistributions[distribution].WasSeen)
                    {
                        normalized.SummOfBidistances          = DistributionCharacteristics[firstIndex, 0];
                        normalized.NumberOfPeople             = Convert.ToInt32(DistributionCharacteristics[firstIndex, 1]);
                        normalized.Minimum                    = DistributionCharacteristics[firstIndex, 2];
                        normalized.Maximum                    = DistributionCharacteristics[firstIndex, 3];
                        normalized.AntisummBidistanses        = DistributionCharacteristics[firstIndex, 4];
                        unityDistributions[distribution].Used = true;
                        if (normalized.SummOfBidistances != 0)
                        {
                            normalizedList.Add(normalized);
                        }
                    }
                }
                NormalizedDistribution[] normalizedDistributions = normalizedList.OrderBy(x => x.Minimum).ToArray();
                DistributionCharacteristics = new double[normalizedDistributions.Length + 1, 5];
                for (int j = 0; j < normalizedDistributions.Length; j++)
                {
                    DistributionCharacteristics[j, 0] = normalizedDistributions[j].SummOfBidistances;
                    DistributionCharacteristics[j, 1] = normalizedDistributions[j].NumberOfPeople;
                    DistributionCharacteristics[j, 2] = normalizedDistributions[j].Minimum;
                    DistributionCharacteristics[j, 3] = normalizedDistributions[j].Maximum;
                    DistributionCharacteristics[j, 4] = normalizedDistributions[j].AntisummBidistanses;
                    if (j == normalizedDistributions.Length - 1)
                    {
                        DistributionCharacteristics[j, 3] = SortedArrayDoubleBackup.Length;
                    }
                }
                thisNumberOfGroups     = previousNumberOfGroups;
                previousNumberOfGroups = normalizedDistributions.Length;
            } while (previousNumberOfGroups < thisNumberOfGroups);
            List <Objects.AnalizedGroup> analizedGroupsList = new List <Objects.AnalizedGroup>();

            for (int finalDistribution = 0; finalDistribution < thisNumberOfGroups; finalDistribution++)
            {
                int[]  all     = GetIndex(Convert.ToInt32(DistributionCharacteristics[finalDistribution, 2]), Convert.ToInt32(DistributionCharacteristics[finalDistribution, 3]), koefficients);
                int    currMin = all[0];
                int    currMax = all[1];
                double mediana = 0;
                for (int currPat = currMin; currPat < currMax; currPat++)
                {
                    mediana = mediana + koefficients[currPat] * ((Entropy * SortedArrayDouble[currPat] / DistributionCharacteristics[finalDistribution, 1]) +
                                                                 ((1 - Entropy) * (SortedArrayDouble[currPat] * (1 / Distances[currPat, 0])) / DistributionCharacteristics[finalDistribution, 4]));
                }
                mediana = mediana * (max - min) + min;
                double percent = DistributionCharacteristics[finalDistribution, 1] / SortedArrayDoubleBackup.Length;
                analizedGroupsList.Add(new Objects.AnalizedGroup(percent, mediana)
                {
                    min   = SortedArrayDouble[currMin] * (max - min) + min,
                    max   = SortedArrayDouble[currMax - 1] * (max - min) + min + 0.00001,
                    count = Convert.ToInt32(DistributionCharacteristics[finalDistribution, 1])
                });
            }
            Objects.AnalizedGroup[] analizedGroupArray = new Objects.AnalizedGroup[analizedGroupsList.Count];
            analizedGroupArray = analizedGroupsList.ToArray();
            for (int f = 0; f < analizedGroupArray.Length; f++)
            {
                List <double> partList  = new List <double>();
                double        dispersia = 0;
                for (int g = 0; g < NonSortedArrayDouble.Length; g++)
                {
                    if (NonSortedArrayDouble[g] >= analizedGroupArray[f].min && NonSortedArrayDouble[g] <= analizedGroupArray[f].max)
                    {
                        partList.Add(NonSortedArrayDouble[g]);
                        dispersia = dispersia + Math.Pow(NonSortedArrayDouble[g] - analizedGroupArray[f].mediana, 2);
                    }
                }
                double[] partArray = new double[partList.Count];
                partArray = partList.ToArray();
                analizedGroupArray[f].dispersia    = Math.Sqrt(dispersia / partArray.Length);
                analizedGroupArray[f].participatns = partArray;
            }
            return(new Objects.AnalizedTuple(analizedGroupArray, col, thisNumberOfGroups + 1, min, max,
                                             meanDensity, NonSortedArrayDouble, new int[analizedGroupArray.Length], Entropy));
        }
Ejemplo n.º 4
0
        public Objects.AnalizedTuple Sorter(Objects.InputHuman[] inputHumenArray, int col, double Upper, double Entropy, bool OneSided)
        {
            double[] NonSortedArrayDouble = inputHumenArray.Select(x => x.Normalized.ElementAt(col).ThisDouble).ToArray();
            int      lastrow = NonSortedArrayDouble.Length;

            double[] SortedArrayDouble = new double[lastrow];
            var      sorted            = NonSortedArrayDouble.OrderByDescending(x => x);
            int      i = lastrow - 1;

            foreach (var dbl in sorted)
            {
                SortedArrayDouble[i] = dbl;
                i--;
            }
            double HighestPeak = 0;
            double min         = SortedArrayDouble[0];
            double max         = SortedArrayDouble[lastrow - 1];
            int    propose     = 0;
            double diffstep;

            do
            {
                propose++;
                proposedGroups = lastrow / propose;
                SortedMatrix   = new double[3, proposedGroups + 1];
                diffstep       = (max - min) / Convert.ToDouble(proposedGroups);
                for (int human = 1; human < lastrow; human++)
                {
                    for (int diff = 1; diff < proposedGroups + 1; diff++)
                    {
                        if (NonSortedArrayDouble[human - 1] >= min && NonSortedArrayDouble[human - 1] <= min + diffstep && diff == 1)
                        {
                            SortedMatrix[1, 1]++;
                        }
                        else if (NonSortedArrayDouble[human - 1] > min + (diff - 1) * diffstep && NonSortedArrayDouble[human - 1] <= min + diff * diffstep)
                        {
                            SortedMatrix[1, diff]++;
                        }
                    }
                }
                HighestPeak = SortedMatrix[1, 1];
                for (int l = 1; l < proposedGroups + 1; l++)
                {
                    if (SortedMatrix[1, l] > HighestPeak)
                    {
                        HighestPeak = SortedMatrix[1, l];
                    }
                }
            } while (HighestPeak < lastrow / Upper);
            Peaks      = new double[proposedGroups];
            FakeHumans = new double[proposedGroups + 1, 3];
            int secondLevelPeak = 0;

            for (int k = 0; k < proposedGroups; k++)
            {
                if (SortedMatrix[1, k + 1] > HighestPeak / Entropy && !OneSided)
                {
                    if (SortedMatrix[1, k + 1] > HighestPeak / Entropy * 2 && secondLevelPeak == 0)
                    {
                        secondLevelPeak = 1;
                    }
                    else if (SortedMatrix[1, k + 1] > HighestPeak / Entropy * 2 && secondLevelPeak != 0)
                    {
                        if (SortedMatrix[1, k] < HighestPeak / Entropy * 2)
                        {
                            step = step + 1;
                        }
                    }
                    Peaks[step]            = Peaks[step] + SortedMatrix[1, k + 1];
                    SortedMatrix[2, k + 1] = step;
                }
                else if (SortedMatrix[1, k + 1] > HighestPeak / Entropy)
                {
                    if (SortedMatrix[1, k + 1] > HighestPeak / Entropy && secondLevelPeak == 0)
                    {
                        secondLevelPeak = 1;
                    }
                    Peaks[step]            = Peaks[step] + SortedMatrix[1, k + 1];
                    SortedMatrix[2, k + 1] = step;
                }
                else
                {
                    secondLevelPeak = 0;
                    while (Peaks[step] > 0)
                    {
                        step++;
                    }
                }
            }
            for (int m = 0; m < proposedGroups; m++)
            {
                allPeaks = allPeaks + Peaks[m];
            }
            NonModifiedSortedMatrix = (double[, ])SortedMatrix.Clone();
            for (int n = 1; n < proposedGroups + 1; n++)
            {
                if (SortedMatrix[2, n] > 0)
                {
                    SortedMatrix[1, n] = (SortedMatrix[1, n] / Peaks[Convert.ToInt32(SortedMatrix[2, n])]) * (diffstep * (n - 0.5));
                    FakeHumans[Convert.ToInt32(SortedMatrix[2, n]), 1] = FakeHumans[Convert.ToInt32(SortedMatrix[2, n]), 1] + SortedMatrix[1, n];
                    FakeHumans[Convert.ToInt32(SortedMatrix[2, n]), 2] = Convert.ToDouble(Peaks[Convert.ToInt32(SortedMatrix[2, n])]) / Convert.ToDouble(allPeaks);
                }
            }
            List <Objects.AnalizedGroup> analizedGroupsList = new List <Objects.AnalizedGroup>();

            for (int o = 1; o < step + 1; o++)
            {
                if (FakeHumans[o, 1] != 0)
                {
                    analizedGroupsList.Add(new Objects.AnalizedGroup(Math.Round(FakeHumans[o, 2], 2), Math.Round(FakeHumans[o, 1] + min, 2)));
                }
            }
            if (analizedGroupsList.Count == 0)
            {
                analizedGroupsList.Add(new Objects.AnalizedGroup(100, Math.Round((max - min) / 2 + min, 2)));
            }
            Objects.AnalizedGroup[] analizedGroupArray = new Objects.AnalizedGroup[analizedGroupsList.Count];
            analizedGroupArray = analizedGroupsList.ToArray();
            for (int j = 0; j < analizedGroupArray.Length; j++)
            {
                double localMin = min;
                double localMax = max;
                if (j != 0 && j != analizedGroupArray.Length - 1)
                {
                    localMin = (analizedGroupArray[j].mediana - analizedGroupArray[j - 1].mediana) / 2 + analizedGroupArray[j - 1].mediana;
                    localMax = (analizedGroupArray[j + 1].mediana - analizedGroupArray[j].mediana) / 2 + analizedGroupArray[j].mediana;
                }
                else if (j != 0)
                {
                    localMin = (analizedGroupArray[j].mediana - analizedGroupArray[j - 1].mediana) / 2 + analizedGroupArray[j - 1].mediana;
                }
                else if (j != analizedGroupArray.Length - 1)
                {
                    localMax = (analizedGroupArray[j + 1].mediana - analizedGroupArray[j].mediana) / 2 + analizedGroupArray[j].mediana;
                }
                int           count     = 0;
                List <double> partList  = new List <double>();
                double        dispersia = 0;
                for (int g = 0; g < SortedArrayDouble.Length; g++)
                {
                    if (SortedArrayDouble[g] >= localMin && SortedArrayDouble[g] < localMax)
                    {
                        count++;
                        partList.Add(SortedArrayDouble[g]);
                        dispersia = dispersia + Math.Pow(SortedArrayDouble[g] - analizedGroupArray[j].mediana, 2);
                    }
                }
                double[] partArray = new double[partList.Count];
                partArray = partList.ToArray();
                analizedGroupArray[j].participatns = partArray;
                analizedGroupArray[j].dispersia    = Math.Sqrt(dispersia / partArray.Length);
                analizedGroupArray[j].max          = localMax;
                analizedGroupArray[j].min          = localMin;
                analizedGroupArray[j].count        = count;
            }
            analizedGroupArray[analizedGroupArray.Length - 1].count = analizedGroupArray[analizedGroupArray.Length - 1].count + 1;
            int[] indicesArray = new int[SortedMatrix.GetUpperBound(1) + 1];
            for (int p = 0; p < indicesArray.Length; p++)
            {
                indicesArray[p] = Convert.ToInt32(SortedMatrix[2, p]);
            }
            return(new Objects.AnalizedTuple(analizedGroupArray, col, proposedGroups, min, max, diffstep, NonSortedArrayDouble, indicesArray, Entropy));
        }