Ejemplo n.º 1
0
        public override void Run(Configuration config)
        {
            //Setup log and solution
              this.log = new RandomLogSpecification(config.RandomSeed, config.MemoryLength, config.MaxTreeDepth);
              this.solution = new SolutionSpecification();
              this.config = config;
              Dilemma best = null;

              //For the number of runs
              for(int run = 0; run < config.NumberOfRuns; run++)
              {
            //Initialize best fitness, so the first will always be a best fitness found
            double bestfitness = -1.0;

            //As long as we are under the number of fitness evals
            while(fitnessevals < config.NumberOfEvals)
            {
              //Make a new dilemma
              List<Dilemma> sequence = new List<Dilemma>();
              //Initialize the memory
              InitializeUniformRandomMemory(config.MemoryLength);
              //Create a new tree
              Dilemma newdilemma = new Dilemma();
              newdilemma.Tree = GenerateNewUniformRandomTree(config.MaxTreeDepth, 0);
              //Zero out total fitness for an average
              double totalfitness = 0.0;
              //Play IPD
              for(int i = 0; i < config.SequenceLength; i++)
              {
            //Add to total fitness
            totalfitness += (double)SingleFitnessCalculation(newdilemma.Tree.GetValue(memory), memory.ToArray()[memory.Count - 1][0]);
            //Place it in memory
            memory.Enqueue(new bool[2] { newdilemma.Tree.GetValue(memory), memory.ToArray()[memory.Count - 1][0] });
            //If the memory is bigger than is allowed, pop the shiz.
            if(memory.Count > config.MemoryLength)
            {
              memory.Dequeue();
            }
              }

              //Get the average
              totalfitness /= (double)config.SequenceLength;
              //Increment fitness evals because this is technically a fitness eval
              fitnessevals++;

              //Check for best and make a log entry if it is a new best.
              if(best == null || bestfitness < totalfitness)
              {
            best = newdilemma;
            bestfitness = totalfitness;
            ((RandomLogSpecification)log).AddEvaluation(fitnessevals, bestfitness);
            Console.WriteLine(fitnessevals + "\t" + bestfitness);
              }
            }
              }
              solution.PreOrderListing = best.Tree.PreOrderStringRealization;
        }
Ejemplo n.º 2
0
        public static void Main(string[] args)
        {
            string filename;
            if(args.Length == 0)
                filename = "default.cfg";
              else
                filename = args[0];

              Configuration config = new Configuration();
              try
              {
            config.loadFromFile(filename);
              }
              catch(Exception e)
              {
            Console.WriteLine("Main Exception: " + e.Message);
            return;
              }

              Console.WriteLine(config);

              //Do some reflection on types that can be used as an evolutionary program.
              var types = Assembly.GetExecutingAssembly().GetTypes();

              GeneticProgram program = null;
              //I know there is a better way to do this.
              foreach(Type t in types)
              {
            foreach(Attribute a in t.GetCustomAttributes(typeof(ProgramAttribute), true))
            {
              if(((ProgramAttribute)a).ProgramType == config.ProgramType)
            program = (GeneticProgram)Activator.CreateInstance(t);
            }
              }

              //Get a random number generator with a set seed, or a time seed.
              Random randomgenerator;
              if(config.RandomSeed < 0)
            randomgenerator = new Random();
              else
            randomgenerator = new Random(config.RandomSeed);

              program.RandomGenerator = randomgenerator;
              program.Run(config);

              //Output stuff to files
              program.Log.writeToFile(config.LogFilePath);
              program.Solution.writeToFile(config.SolutionFilePath);
        }
Ejemplo n.º 3
0
        public override void Run(Configuration config)
        {
            //Setup log and solution
              this.log = new COGPLogSpecification(config.RandomSeed, config.MemoryLength, config.MaxTreeDepth);
              this.solution = new SolutionSpecification();
              this.config = config;
              Dilemma bestbestdilemma = null;
              for(int run=0; run < config.NumberOfRuns; run++)
              {
            //Initialize with ramped half and half
            List<Dilemma> population = RampedHalfAndHalfInitialization(config.PopulationSize, config.MemoryLength);
            //Initialize best fitness, so the first will always be a best fitness found
            Dilemma bestdilemma = null;
            fitnessevals = 0;
            int samefitnessiterations = 0;
            double averagefitness = 0.0;

            //Set up the initial population.
            for(int i = 0; i < population.Count; i++)
            {
              population[i].TimesPlayedIPD = 0;
              population[i].Fitness = 0.0;
            }

            //For each person in the population, pick a random other one from the population
            //to play IPD against. Do this populationsize * fitnesssamplingration times.
            //Record the fitness values for both.
            for(int i = 0; i < population.Count; i++)
            {
              Dilemma d1 = population[i];
              for(int j = 0; j <= (int)(config.PopulationSize * config.FitnessSamplingRatio); j++)
              {
            int randomchoice = 0;
            do
            {
              randomchoice = RandomGenerator.Next(0, config.PopulationSize);
            } while(randomchoice == i);
            Dilemma d2 = population[randomchoice];

            PlayIPD(ref d1, ref d2, config.SequenceLength, config.ParsimonyPressure, config.MaxTreeDepth, config.MemoryLength);
            d1.TimesPlayedIPD++;
            d2.TimesPlayedIPD++;
              }
            }

            //Normalize each dilemma's fitness in the population by
            //the times they played IPD.
            for(int i = 0; i < population.Count; i++)
            {
              population[i].Fitness /= population[i].TimesPlayedIPD;
            }

            bestdilemma = null;
            //Calculate average fitness, and check for best local dilemma
            for(int i = 0; i < population.Count; i++)
            {
              averagefitness += population[i].Fitness;
              if(bestdilemma == null || bestdilemma.Fitness < population[i].Fitness)
              {
            bestdilemma = population[i];
              }
            }
            //Average fitness, and output to log.
            averagefitness /= (double)config.PopulationSize;
            ((COGPLogSpecification)log).AddEvaluation(run, fitnessevals, averagefitness, bestdilemma.Fitness);
            Console.WriteLine(fitnessevals + "\t" + averagefitness + "\t" + bestdilemma.Fitness);

            //As long as we are under the number of fitness evals
            while(fitnessevals < config.NumberOfEvals)
            {
              //Pick mutation or recombination
              int mutateorrecombine = RandomGenerator.Next(0, 2);
              List<Dilemma> newpopulation = new List<Dilemma>();
              //Mutation
              if(mutateorrecombine == 0)
              {
            //Create lambda children
            for(int i = 0; i < config.ChildrenSize; i++)
            {
              //Select a random dilemma in the population to mutate.
              int randomselection = RandomGenerator.Next(0, population.Count);
              int mutateindex = 0;
              //Do the mutation.
              Dilemma newdil = SubTreeMutation(population[randomselection], RandomGenerator, config.MaxTreeDepth, out mutateindex);
              //Add it to the new population
              newpopulation.Add(newdil);
            }
              }
              //Recombination
              else
              {
            //Do this lambda times / 2 because each recombination creates two children.
            for(int i = 0; i < config.ChildrenSize / 2; i++)
            {
              //Fitness proportional or over selection
              if(config.UseFitnessProportionalForParent)
              {
                Dilemma parenta = FitnessProportionalSelection(population, this.RandomGenerator);
                Dilemma parentb = FitnessProportionalSelection(population, this.RandomGenerator);
                //Dummies. The out parameters are only used in tests.
                int indexa = 0;
                int indexb = 0;
                //Run recombination
                Dilemma[] newdils = SubTreeRecombination(parenta, parentb, RandomGenerator, out indexa, out indexb);
                //Add both new dilemmas to the new population
                newpopulation.Add(newdils[0]);
                newpopulation.Add(newdils[1]);
              }
              else if(config.UseOverSelectionForParent)
              {
                Dilemma parenta = OverSelection(population, config.PopulationSize, RandomGenerator);
                Dilemma parentb = OverSelection(population, config.PopulationSize, RandomGenerator);
                //Dummies. The out parameters are only used in tests.
                int indexa = 0;
                int indexb = 0;
                //run recombination
                Dilemma[] newdils = SubTreeRecombination(parenta, parentb, RandomGenerator, out indexa, out indexb);
                //Add both  new dilemmas to the new population
                newpopulation.Add(newdils[0]);
                newpopulation.Add(newdils[1]);
              }
              else
              {
                throw new Exception("Parent selection algorithm not selected.");
              }
            }
              }
              //Use mu,lambda. Dump the old population, and only run IPD and survivor selection on new population.
              if(config.UseCommaForSelection)
              {
            //Truncation or k tournament

            //Reset each dilemma's times played IPD and fitness in the population.
            for(int i = 0; i < newpopulation.Count; i++)
            {
              newpopulation[i].TimesPlayedIPD = 0;
              newpopulation[i].Fitness = 0.0;
            }

            //For each one in the population play IPD against mu*fitnesssamplingration times.
            //Record it for both playing dilemmas.
            for(int i = 0; i < newpopulation.Count; i++)
            {
              Dilemma d1 = newpopulation[i];
              for(int j = 0; j <= (int)(config.PopulationSize * config.FitnessSamplingRatio); j++)
              {
                int randomchoice = 0;
                do
                {
                  randomchoice = RandomGenerator.Next(0, newpopulation.Count);
                } while(randomchoice == i);
                Dilemma d2 = newpopulation[randomchoice];

                PlayIPD(ref d1, ref d2, config.SequenceLength, config.ParsimonyPressure, config.MaxTreeDepth, config.MemoryLength);
                d1.TimesPlayedIPD++;
                d2.TimesPlayedIPD++;
              }
            }
            //Normalize the fitnesses
            for(int i = 0; i < newpopulation.Count; i++)
              newpopulation[i].Fitness /= newpopulation[i].TimesPlayedIPD;

            //Use truncation to select the new population.
            if(config.UseTruncationForSurvival)
            {
              population = Truncation(newpopulation, config.PopulationSize);
            }
            //Use k tournament to select the new population.
            else if(config.UseKTournamentForSurvival)
            {
              population = KTournamentWithoutReplacement(newpopulation, config.PopulationSize, config.SurivivalTournamentSize, this.RandomGenerator);
            }
              }
              //Else use mu+lambda and do selection for the newpopulation and old population
              else if(config.UsePlusForSelection)
              {
            //add the new population to the normal population
            population.AddRange(newpopulation);

            //reset IPD related things for each one.
            for(int i = 0; i < population.Count; i++)
            {
              population[i].TimesPlayedIPD = 0;
              population[i].Fitness = 0.0;
            }

            //For each one in the population play IPD against mu*fitnesssamplingration times.
            //Record it for both playing dilemmas.
            for(int i = 0; i < population.Count; i++)
            {
              Dilemma d1 = population[i];
              for(int j = 0; j <= (int)(config.PopulationSize * config.FitnessSamplingRatio); j++)
              {
                int randomchoice = 0;
                do
                {
                  randomchoice = RandomGenerator.Next(0, config.PopulationSize);
                } while(randomchoice == i);
                Dilemma d2 = population[randomchoice];

                PlayIPD(ref d1, ref d2, config.SequenceLength, config.ParsimonyPressure, config.MaxTreeDepth, config.MemoryLength);
                d1.TimesPlayedIPD++;
                d2.TimesPlayedIPD++;
              }
            }

            //Normalize the fitnesses
            for(int i = 0; i < population.Count; i++)
              population[i].Fitness /= population[i].TimesPlayedIPD;

            //Truncation or k tournament
            if(config.UseTruncationForSurvival)
            {
              //Run truncation on the population
              population = Truncation(population, config.PopulationSize);
            }
            else if(config.UseKTournamentForSurvival)
            {
              //Run ktournament on the population
              population = KTournamentWithoutReplacement(population, config.PopulationSize, config.SurivivalTournamentSize, this.RandomGenerator);
            }
              }
              //Clear out the new population. We no longer need it for this iteration
              newpopulation.Clear();

              bool nochange = true;
              averagefitness = 0.0;
              bestdilemma = null;
              //Calculate average fitness, and check for best local dilemma
              for(int i = 0; i < population.Count; i++)
              {
            averagefitness += population[i].Fitness;
            if(bestdilemma == null || bestdilemma.Fitness < population[i].Fitness)
            {
              bestdilemma = population[i];
              nochange = false;
            }
              }
              //Average
              averagefitness /= config.PopulationSize;
              //No change in best fitness
              if(nochange)
            samefitnessiterations++;
              else
            samefitnessiterations = 0;

              ((COGPLogSpecification)log).AddEvaluation(run, fitnessevals, averagefitness, bestdilemma.Fitness);
              Console.WriteLine(fitnessevals + "\t" + averagefitness + "\t" + bestdilemma.Fitness);
              //Check for termination convergence
              if(samefitnessiterations >= config.TerminationConvergence)
            break;
            }
            //Clear the population, and check for global best fitness.
            population.Clear();
            if(bestbestdilemma == null || bestbestdilemma.Fitness < bestdilemma.Fitness)
              bestbestdilemma = bestdilemma;
            Dilemma winner = PlayIPDTitForTat(bestdilemma, config.SequenceLength, config.ParsimonyPressure, config.MaxTreeDepth, config.MemoryLength);
            ((COGPLogSpecification)log).AddAbsoluteFitness(winner.Fitness);
            bestdilemma = null;
            Thread.Sleep(2);
              }
              //Grab the global best dilemma
              bestbestdilemma.GenerateUniformRandomMemory(config.MemoryLength, RandomGenerator);
              solution.PreOrderListing = bestbestdilemma.Tree.PreOrderStringRealization;
        }
Ejemplo n.º 4
0
 public abstract void Run(Configuration config);
Ejemplo n.º 5
0
        public override void Run(Configuration config)
        {
            //Setup log and solution
              this.log = new GPLogSpecification(config.RandomSeed, config.MemoryLength, config.MaxTreeDepth);
              this.solution = new SolutionSpecification();
              this.config = config;
              Dilemma bestbestdilemma = null;
              //For the number of runs

              for(int run = 0; run < config.NumberOfRuns; run++)
              {
            //Initialize with ramped half and half
            List<Dilemma> population = RampedHalfAndHalfInitialization(config.PopulationSize, config.MemoryLength);
            //Initialize best fitness, so the first will always be a best fitness found
            Dilemma bestdilemma = null;
            fitnessevals = 0;
            int samefitnessiterations = 0;
            double averagefitness = 0.0;

            //Set up the initial population.
            for(int i = 0; i < population.Count; i++)
            {
              population[i] = PlayIPD(population[i], config.SequenceLength, config.ParsimonyPressure, config.MaxTreeDepth, config.MemoryLength);
              averagefitness += population[i].Fitness;
              if(bestdilemma == null || bestdilemma.Fitness < population[i].Fitness)
              {
            bestdilemma = population[i];
              }
            }
            //Average fitness, and output to log.
            averagefitness /= (double)config.PopulationSize;
            ((GPLogSpecification)log).AddEvaluation(run, fitnessevals, averagefitness, bestdilemma.Fitness);
            Console.WriteLine(fitnessevals + "\t" + averagefitness + "\t" + bestdilemma.Fitness);

            //As long as we are under the number of fitness evals
            while(fitnessevals < config.NumberOfEvals)
            {
              int mutateorrecombine = RandomGenerator.Next(0, 2);

              //Mutation
              if(mutateorrecombine == 0)
              {
            for(int i = 0; i < config.ChildrenSize; i++)
            {
              int randomselection = RandomGenerator.Next(0, population.Count);
              int mutateindex = 0;
              Dilemma newdil = SubTreeMutation(population[randomselection], RandomGenerator, config.MaxTreeDepth, out mutateindex);
              newdil = PlayIPD(population[randomselection], config.SequenceLength, config.ParsimonyPressure, config.MaxTreeDepth, config.MemoryLength);
              population.Add(newdil);
            }
              }
              //Recombination
              else
              {
            for(int i = 0; i < config.ChildrenSize; i++)
            {
              //Fitness proportional or over selection
              if(config.UseFitnessProportionalForParent)
              {
                Dilemma parenta = FitnessProportionalSelection(population, this.RandomGenerator);
                Dilemma parentb = FitnessProportionalSelection(population, this.RandomGenerator);
                //Dummies. The out parameters are only used in tests.
                int indexa = 0;
                int indexb = 0;
                Dilemma newdil = SubTreeRecombination(parenta, parentb, RandomGenerator, out indexa, out indexb);
                newdil = PlayIPD(newdil, config.SequenceLength, config.ParsimonyPressure, config.MaxTreeDepth, config.MemoryLength);
                population.Add(newdil);
              }
              else if(config.UseOverSelectionForParent)
              {
                Dilemma parenta = OverSelection(population, config.PopulationSize, RandomGenerator);
                Dilemma parentb = OverSelection(population, config.PopulationSize, RandomGenerator);
                //Dummies. The out parameters are only used in tests.
                int indexa = 0;
                int indexb = 0;
                Dilemma newdil = SubTreeRecombination(parenta, parentb, RandomGenerator, out indexa, out indexb);
                newdil = PlayIPD(newdil, config.SequenceLength, config.ParsimonyPressure, config.MaxTreeDepth, config.MemoryLength);
                population.Add(newdil);
              }
              else
              {
                throw new Exception("Parent selection algorithm not selected.");
              }
            }
              }

              //Truncation or k tournament
              if(config.UseTruncationForSurvival)
              {
            population = Truncation(population, config.PopulationSize);
              }
              else if(config.UseKTournamentForSurvival)
              {
            population = KTournamentWithoutReplacement(population, config.PopulationSize, config.SurivivalTournamentSize, this.RandomGenerator);
              }

              bool nochange = true;
              averagefitness = 0.0;
              //Calculate average fitness, and check for best local dilemma
              for(int i = 0; i < population.Count; i++)
              {
            Console.WriteLine(population[i]);
            averagefitness += population[i].Fitness;
            if(bestdilemma == null || bestdilemma.Fitness < population[i].Fitness)
            {
              bestdilemma = population[i];
              nochange = false;
            }
              }
              //Average
              averagefitness /= config.PopulationSize;
              //No change in best fitness
              if(nochange)
            samefitnessiterations++;
              else
            samefitnessiterations = 0;

              ((GPLogSpecification)log).AddEvaluation(run, fitnessevals, averagefitness, bestdilemma.Fitness);
              Console.WriteLine(fitnessevals + "\t" + averagefitness + "\t" + bestdilemma.Fitness);

              //Check for termination convergence
              if(samefitnessiterations >= config.TerminationConvergence)
            break;
            }
            //Clear the population, and check for global best fitness.
            population.Clear();
            if(bestbestdilemma == null || bestbestdilemma.Fitness < bestdilemma.Fitness)
              bestbestdilemma = bestdilemma;
            bestdilemma = null;
              }
              solution.PreOrderListing = bestbestdilemma.Tree.PreOrderStringRealization;
        }