Ejemplo n.º 1
0
        AddNewNeuronLinks(int linkIndex, CInnovation innovations)
        {
            float initialWeight = m_vecLinks[linkIndex].Weight;

            int from = m_vecLinks[linkIndex].FromNeuron;
            int to   = m_vecLinks[linkIndex].ToNeuron;

            SNeuronGene fromNeuron = m_vecNeurons[GetNeuronIndexById(from)];
            SNeuronGene toNeuron   = m_vecNeurons[GetNeuronIndexById(from)];

            // The depth of the neuron is used to determine if the new link
            // feeds backwards (i.e it is a recurrent link) or forwards.
            float newDepth = (fromNeuron.SplitY + toNeuron.SplitY) / 2;
            float newWidth = (fromNeuron.SplitX + toNeuron.SplitX) / 2;

            int innovationID = innovations.CheckInnovation(from, to,
                                                           InnovationType.NewNeuron);
            bool alreadyUsed = innovationID >= 0 &&
                               UsingNeuronID(innovations.GetNeuronID(innovationID));

            if (innovationID < 0 || alreadyUsed)
            {
                AddNeuronNewInnovation(innovations, from, to, newWidth,
                                       newDepth, initialWeight);
            }
            else
            {
                int newNeuronID = innovations.GetNeuronID(innovationID);
                AddNeuronExistingInnovation(innovations, newNeuronID, from, to,
                                            newWidth, newDepth, initialWeight);
            }
        }
Ejemplo n.º 2
0
        AddLoopedRecurrentLink(out int neuron1_ID, out int neuron2_ID,
                               int numTriesToFindLoop)
        {
            // Attempt numTriesToFindLoop times to find a neuron that has no
            // loopback connection and is either a hidden or output neuron.
            while (numTriesToFindLoop-- > 0)
            {
                int         index      = Random.Range(0, m_vecNeurons.Count);
                SNeuronGene randNeuron = m_vecNeurons[index];

                if (!randNeuron.IsRecurrent &&
                    (randNeuron.Type == NeuronType.Hidden ||
                     randNeuron.Type == NeuronType.Output))
                {
                    neuron1_ID = neuron2_ID = randNeuron.ID;

                    randNeuron.IsRecurrent = true;

                    return(true);
                }
            }

            neuron1_ID = neuron2_ID = -1;
            return(false);
        }
Ejemplo n.º 3
0
 SNeuronGene(SNeuronGene original)
 {
     ID                 = original.ID;
     Type               = original.Type;
     IsRecurrent        = original.IsRecurrent;
     SplitX             = original.SplitX;
     SplitY             = original.SplitY;
     ActivationResponse = original.ActivationResponse;
 }
Ejemplo n.º 4
0
 MutateActivationResponse(float mutationRate,
                          float maxPertubation)
 {
     for (int i = 0; i < m_vecNeurons.Count; i++)
     {
         SNeuronGene neuron = m_vecNeurons[i];
         if (Random.value < mutationRate)
         {
             neuron.ActivationResponse += Random.Range(-1.0f, 1.0f) * maxPertubation;
         }
     }
 }
Ejemplo n.º 5
0
        GetNeuronIndexById(int id)
        {
            for (int i = 0; i < m_vecNeurons.Count; i++)
            {
                SNeuronGene neuron = m_vecNeurons[i];

                if (neuron.ID == id)
                {
                    return(i);
                }
            }
            return(-1);
        }
Ejemplo n.º 6
0
        CreatePhenotype(int depth)
        {
            // Delete previous phenotype assigned to this genome.
            DeletePhenotype();

            List <SNeuron> neurons = new List <SNeuron> ();

            // Add the neuron genes to the phenotype neurons.
            for (int i = 0; i < m_vecNeurons.Count; i++)
            {
                SNeuronGene neuron = m_vecNeurons[i];
                neurons.Add(new SNeuron(neuron.Type,
                                        neuron.ID,
                                        neuron.SplitY,
                                        neuron.SplitX,
                                        neuron.ActivationResponse));
            }

            // Create the links for the phenotype.
            for (int i = 0; i < m_vecLinks.Count; i++)
            {
                SLinkGene link = m_vecLinks[i];
                // Ignore the disabled links
                if (link.Enabled)
                {
                    SNeuron fromNeuron = neurons[GetNeuronIndexById(link.FromNeuron)];
                    SNeuron toNeuron   = neurons[GetNeuronIndexById(link.ToNeuron)];

                    SLink newLink = new SLink(link.Weight, fromNeuron, toNeuron, link.IsRecurrent);

                    fromNeuron.linksFrom.Add(newLink);
                    toNeuron.linksTo.Add(newLink);
                }
            }

            m_Phenotype = new CNeuralNet(neurons, depth);

            return(m_Phenotype);
        }