Ejemplo n.º 1
0
        private void backWorkLoadData_DoWork(object sender, DoWorkEventArgs e)
        //private void btn_load_Click(object sender, EventArgs e)
        {
            ExperimentsNames wsiIndexItem = new ExperimentsNames();

            this.Invoke(new MethodInvoker(delegate() { wsiIndexItem = (ExperimentsNames)cmbBox_experiments.SelectedItem; }));
            int wsiIndex = wsiIndexItem.Order;

            richTextBox1.Invoke((MethodInvoker) delegate {
                richTextBox1.Text = $"Načitávam facts";
            });
            factorsOfMisclassification = LoadDatabase.Load_Factors(ExplanationDatabase.factOfMisclass_dir_path[wsiIndex], richTextBox1);
            string cancer_path = ExplanationDatabase.wsi_paths[wsiIndex];
            string label_path  = ExplanationDatabase.wsi_labels_paths[wsiIndex];

            var cancer_img = new Bitmap(cancer_path);

            this.cancerBm = cancer_img;
            richTextBox1.Invoke((MethodInvoker) delegate {
                richTextBox1.Text = $"Načitávam label";
            });
            var label_img = new Bitmap(label_path);

            this.labelBm = label_img;

            this.memberships      = LoadDatabase.LoadMemberships(wsiIndex);
            this.data_memberships = LoadDatabase.LoadDataMembership();
            this.data_paths       = LoadDatabase.LoadDataPaths();

            trackBar1.Invoke((MethodInvoker) delegate {
                trackBar1.Visible = true;
            });
            pcBx_cancer.Image = cancer_img;
            pcBx_label.Image  = label_img;

            this.history           = new ExperimentHistory();
            this.wsi_name          = wsiIndexItem.Name;
            folderPathToSaveResult = ExplanationDatabase.WSI_DATA_PATH + wsi_name + "\\results";
            Directory.CreateDirectory(folderPathToSaveResult);

            // load sugggested point to examine
            this.suggestedPoints = Utilities.LoadSuggestedPoints(this.wsi_name);
            this.suggestedPoints.Shuffle();
        }
Ejemplo n.º 2
0
        private void pcBx_cancer_Click(object sender, EventArgs e)
        {
            if (pcBx_cancer.Image != null && pcBx_label.Image != null)
            {
                MouseEventArgs me          = (MouseEventArgs)e;
                Point          coordinates = me.Location;
                if (me.Button == System.Windows.Forms.MouseButtons.Left)
                {
                    var coord = Utilities.GetAbsolutCoordinates(coordinates, ORIGINAL_SIZE, pcBx_cancer);
                    this.actualCoord = coord;
                    int x = coord[0];
                    int y = coord[1];

                    var pxColor        = labelBm.GetPixel(x, y);
                    int predictedLabel = ExplanationDatabase.GetLabel(pxColor);
                    var facts          = LoadDatabase.GetFactors(factorsOfMisclassification, predictedLabel, x, y);

                    richTextBox1.Text = Utilities.ExtractSemantic(predictedLabel, facts);
                    Utilities.HighlightWords(ExplanationDatabase.classes.Values.ToArray(), richTextBox1);

                    // show image on wchich decision was made
                    float[] membValue         = LoadDatabase.GetMembershipVector(memberships, x, y);
                    string  decisionImagePath = LoadDatabase.GetTheMostSimilarImagePath(
                        predictedLabel, predictedLabel, membValue[predictedLabel - 1], data_memberships, data_paths);

                    pcBx_decisionImg.Image = new Bitmap(decisionImagePath);
                    pcBx_decisionImg.Refresh();

                    //label_pcBx_decisionImg.Text = $"Tkanivo {ExplanationDatabase.classes[predictedLabel]}";
                    label_pcBx_decisionImg.Text = $"Tissue {ExplanationDatabase.classes[predictedLabel]}";

                    // show high similar image if there are any
                    var pcBoxList = MergePcBxAndClear();
                    var labelList = MergeLabelsAndClear();

                    var highProbLabels = Utilities.GetElementsByValue(facts, "3");
                    var lowProbLabels  = Utilities.GetElementsByValue(facts, "2");

                    foreach (var prob in highProbLabels)
                    {
                        string imgPath = LoadDatabase.GetTheMostSimilarImagePath(
                            predictedLabel, prob, membValue[prob - 1], data_memberships, data_paths);
                        if (pcBoxList.Count > 0)
                        {
                            pcBoxList[0].Image = new Bitmap(imgPath);
                            Graphics  graphics = Graphics.FromImage((Image)pcBoxList[0].Image);
                            Pen       pen      = new Pen(Color.Red, 8);
                            Rectangle rect     = new Rectangle(0, 0, 150, 150);
                            graphics.DrawRectangle(pen, rect);
                            pcBoxList[0].Refresh();
                            labelList[0].Text = $"Tissue {ExplanationDatabase.classes[prob]}";
                            //labelList[0].Text = $"Tkanivo {ExplanationDatabase.classes[prob]}";
                            pcBoxList.RemoveAt(0);
                            labelList.RemoveAt(0);
                        }
                    }
                    foreach (var prob in lowProbLabels)
                    {
                        string imgPath = LoadDatabase.GetTheMostSimilarImagePath(
                            predictedLabel, prob, membValue[prob - 1], data_memberships, data_paths);
                        if (pcBoxList.Count > 0)
                        {
                            pcBoxList[0].Image = new Bitmap(imgPath);
                            Graphics  graphics = Graphics.FromImage((Image)pcBoxList[0].Image);
                            Pen       pen      = new Pen(Color.Yellow, 8);
                            Rectangle rect     = new Rectangle(0, 0, 150, 150);
                            graphics.DrawRectangle(pen, rect);
                            pcBoxList[0].Refresh();
                            labelList[0].Text = $"Tissue {ExplanationDatabase.classes[prob]}";
                            //labelList[0].Text = $"Tkanivo {ExplanationDatabase.classes[prob]}";
                            pcBoxList.RemoveAt(0);
                            labelList.RemoveAt(0);
                        }
                    }

                    this.actualPredicted      = predictedLabel;
                    groupBox_accuracy.Enabled = true;
                    this.pointer    = this.SetNormalizePoint(coordinates);
                    this.newPointer = this.SetNormalizePoint(coordinates);
                    pcBx_label.Refresh();
                    pcBx_cancer.Refresh();
                }
            }
        }