//***********************************************************************
        // Tests the correct implementation of sqrt() method.
        //***********************************************************************

        public static void SqrtTest(int rounds)
        {
                Random rand = new Random();
	        for(int count = 0; count < rounds; count++)
	        {
	                // generate data of random length
		        int t1 = 0;
		        while(t1 == 0)
			        t1 = (int)(rand.NextDouble() * 1024);

                        Console.Write("Round = " + count);

                        BigInteger a = new BigInteger();
                        a.genRandomBits(t1, rand);

                        BigInteger b = a.sqrt();
                        BigInteger c = (b+1)*(b+1);

                        // check that b is the largest integer such that b*b <= a
                        if(c <= a)
	        	{
		        	Console.WriteLine("\nError at round " + count);
                                Console.WriteLine(a + "\n");
			        return;
		        }
		        Console.WriteLine(" <PASSED>.");
	        }
        }
        //***********************************************************************
        // Generates a random number with the specified number of bits such
        // that gcd(number, this) = 1
        //***********************************************************************

        public BigInteger genCoPrime(int bits, Random rand)
        {
	        bool done = false;
	        BigInteger result = new BigInteger();

	        while(!done)
	        {
	                result.genRandomBits(bits, rand);
	                //Console.WriteLine(result.ToString(16));

		        // gcd test
		        BigInteger g = result.gcd(this);
			if(g.dataLength == 1 && g.data[0] == 1)
                                done = true;
	        }

	        return result;
        }
        //***********************************************************************
        // Generates a positive BigInteger that is probably prime.
        //***********************************************************************

        public static BigInteger genPseudoPrime(int bits, int confidence, Random rand)
        {
	        BigInteger result = new BigInteger();
	        bool done = false;

	        while(!done)
	        {
		        result.genRandomBits(bits, rand);
		        result.data[0] |= 0x01;		// make it odd

		        // prime test
		        done = result.isProbablePrime(confidence);
	        }
	        return result;
        }
        //***********************************************************************
        // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
        //
        // p is probably prime if for any a < p (a is not multiple of p),
        // a^((p-1)/2) mod p = J(a, p)
        //
        // where J is the Jacobi symbol.
        //
        // Otherwise, p is composite.
        //
        // Returns
        // -------
        // True if "this" is a Euler pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        //***********************************************************************

        public bool SolovayStrassenTest(int confidence)
        {
                BigInteger thisVal;
                if((this.data[maxLength-1] & 0x80000000) != 0)        // negative
                        thisVal = -this;
                else
                        thisVal = this;

                if(thisVal.dataLength == 1)
                {
                        // test small numbers
                        if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
                                return false;
                        else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
                                return true;
                }

                if((thisVal.data[0] & 0x1) == 0)     // even numbers
                        return false;


	        int bits = thisVal.bitCount();
	        BigInteger a = new BigInteger();
	        BigInteger p_sub1 = thisVal - 1;
	        BigInteger p_sub1_shift = p_sub1 >> 1;

	        Random rand = new Random();

	        for(int round = 0; round < confidence; round++)
	        {
		        bool done = false;

		        while(!done)		// generate a < n
		        {
			        int testBits = 0;

			        // make sure "a" has at least 2 bits
			        while(testBits < 2)
				        testBits = (int)(rand.NextDouble() * bits);

			        a.genRandomBits(testBits, rand);

			        int byteLen = a.dataLength;

                                // make sure "a" is not 0
			        if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
				        done = true;
		        }

                        // check whether a factor exists (fix for version 1.03)
		        BigInteger gcdTest = a.gcd(thisVal);
                        if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                                return false;

		        // calculate a^((p-1)/2) mod p

		        BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
		        if(expResult == p_sub1)
		                expResult = -1;

                        // calculate Jacobi symbol
                        BigInteger jacob = Jacobi(a, thisVal);

                        //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
                        //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

                        // if they are different then it is not prime
                        if(expResult != jacob)
			        return false;
	        }

	        return true;
        }
        //***********************************************************************
        // Probabilistic prime test based on Rabin-Miller's
        //
        // for any p > 0 with p - 1 = 2^s * t
        //
        // p is probably prime (strong pseudoprime) if for any a < p,
        // 1) a^t mod p = 1 or
        // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
        //
        // Otherwise, p is composite.
        //
        // Returns
        // -------
        // True if "this" is a strong pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        //***********************************************************************

        public bool RabinMillerTest(int confidence)
        {
                BigInteger thisVal;
                if((this.data[maxLength-1] & 0x80000000) != 0)        // negative
                        thisVal = -this;
                else
                        thisVal = this;

                if(thisVal.dataLength == 1)
                {
                        // test small numbers
                        if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
                                return false;
                        else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
                                return true;
                }

                if((thisVal.data[0] & 0x1) == 0)     // even numbers
                        return false;


                // calculate values of s and t
                BigInteger p_sub1 = thisVal - (new BigInteger(1));
                int s = 0;

                for(int index = 0; index < p_sub1.dataLength; index++)
                {
                        uint mask = 0x01;

                        for(int i = 0; i < 32; i++)
                        {
                                if((p_sub1.data[index] & mask) != 0)
                                {
                                        index = p_sub1.dataLength;      // to break the outer loop
                                        break;
                                }
                                mask <<= 1;
                                s++;
                        }
                }

                BigInteger t = p_sub1 >> s;

	        int bits = thisVal.bitCount();
	        BigInteger a = new BigInteger();
	        Random rand = new Random();

	        for(int round = 0; round < confidence; round++)
	        {
		        bool done = false;

		        while(!done)		// generate a < n
		        {
			        int testBits = 0;

			        // make sure "a" has at least 2 bits
			        while(testBits < 2)
				        testBits = (int)(rand.NextDouble() * bits);

			        a.genRandomBits(testBits, rand);

			        int byteLen = a.dataLength;

                                // make sure "a" is not 0
			        if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
				        done = true;
		        }

                        // check whether a factor exists (fix for version 1.03)
		        BigInteger gcdTest = a.gcd(thisVal);
                        if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                                return false;

                        BigInteger b = a.modPow(t, thisVal);

                        /*
                        Console.WriteLine("a = " + a.ToString(10));
                        Console.WriteLine("b = " + b.ToString(10));
                        Console.WriteLine("t = " + t.ToString(10));
                        Console.WriteLine("s = " + s);
                        */

                        bool result = false;

                        if(b.dataLength == 1 && b.data[0] == 1)         // a^t mod p = 1
                                result = true;

                        for(int j = 0; result == false && j < s; j++)
                        {
                                if(b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
                                {
                                        result = true;
                                        break;
                                }

                                b = (b * b) % thisVal;
                        }

                        if(result == false)
                                return false;
                }
	        return true;
        }
        //***********************************************************************
        // Probabilistic prime test based on Fermat's little theorem
        //
        // for any a < p (p does not divide a) if
        //      a^(p-1) mod p != 1 then p is not prime.
        //
        // Otherwise, p is probably prime (pseudoprime to the chosen base).
        //
        // Returns
        // -------
        // True if "this" is a pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        // Note - this method is fast but fails for Carmichael numbers except
        // when the randomly chosen base is a factor of the number.
        //
        //***********************************************************************

        public bool FermatLittleTest(int confidence)
        {
                BigInteger thisVal;
                if((this.data[maxLength-1] & 0x80000000) != 0)        // negative
                        thisVal = -this;
                else
                        thisVal = this;

                if(thisVal.dataLength == 1)
                {
                        // test small numbers
                        if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
                                return false;
                        else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
                                return true;
                }

                if((thisVal.data[0] & 0x1) == 0)     // even numbers
                        return false;

	        int bits = thisVal.bitCount();
	        BigInteger a = new BigInteger();
	        BigInteger p_sub1 = thisVal - (new BigInteger(1));
	        Random rand = new Random();

	        for(int round = 0; round < confidence; round++)
	        {
		        bool done = false;

		        while(!done)		// generate a < n
		        {
			        int testBits = 0;

			        // make sure "a" has at least 2 bits
			        while(testBits < 2)
				        testBits = (int)(rand.NextDouble() * bits);

			        a.genRandomBits(testBits, rand);

			        int byteLen = a.dataLength;

                                // make sure "a" is not 0
			        if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                                        done = true;
		        }

                        // check whether a factor exists (fix for version 1.03)
		        BigInteger gcdTest = a.gcd(thisVal);
                        if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                                return false;

		        // calculate a^(p-1) mod p
		        BigInteger expResult = a.modPow(p_sub1, thisVal);

		        int resultLen = expResult.dataLength;

                        // is NOT prime is a^(p-1) mod p != 1

		        if(resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
		        {
		                //Console.WriteLine("a = " + a.ToString());
			        return false;
                        }
	        }

	        return true;
        }