Ejemplo n.º 1
0
        /// <summary>
        ///     Decomposes a non-convex polygon into a number of convex polygons, up to maxPolygons (remaining pieces are thrown
        ///     out). Each resulting polygon will have no more than Settings.MaxPolygonVertices vertices.
        ///     <para/>
        ///     Warning: Only works on simple polygons
        /// </summary>
        /// <param name="vertices">The vertices.</param>
        /// <param name="maxPolygons">The maximum number of polygons.</param>
        /// <param name="tolerance">The tolerance.</param>
        /// <returns></returns>
        public static List <List <Vector2> > ConvexPartition(
            List <Vector2> vertices, int maxPolygons = int.MaxValue, float tolerance = 0)
        {
            if (vertices.Count < 3)
            {
                return(new List <List <Vector2> > {
                    vertices
                });
            }

            List <Triangle> triangulated;

            if (IsCounterClockWise(vertices))
            {
                var tempP = new List <Vector2>(vertices);
                tempP.Reverse();
                triangulated = TriangulatePolygon(tempP);
            }
            else
            {
                triangulated = TriangulatePolygon(vertices);
            }
            if (triangulated.Count < 1)
            {
                // Still no luck? Oh well...
                throw new Exception("Can't triangulate your polygon.");
            }

            var polygonizedTriangles = PolygonizeTriangles(triangulated, maxPolygons, tolerance);

            //The polygonized triangles are not guaranteed to be without collinear points. We remove
            //them to be sure.
            for (var i = 0; i < polygonizedTriangles.Count; i++)
            {
                polygonizedTriangles[i] = Simplification.CollinearSimplify(polygonizedTriangles[i], 0);
            }

            // Remove empty vertex collections.
            for (var i = polygonizedTriangles.Count - 1; i >= 0; i--)
            {
                if (polygonizedTriangles[i].Count == 0)
                {
                    polygonizedTriangles.RemoveAt(i);
                }
            }

            return(polygonizedTriangles);
        }
Ejemplo n.º 2
0
        /// <summary>Actual algorithm.</summary>
        /// <param name="subject">The subject polygon.</param>
        /// <param name="clip">The clip polygon, which is added, subtracted or intersected with the subject</param>
        /// <param name="clipType">The operation to be performed. Either Union, Difference or Intersection.</param>
        /// <param name="error">The error generated (if any)</param>
        /// <returns>
        ///     A list of closed polygons, which make up the result of the clipping operation. Outer contours are ordered
        ///     counter clockwise, holes are ordered clockwise.
        /// </returns>
        private static List <List <Vector2> > Execute(
            IList <Vector2> subject, IList <Vector2> clip, PolyClipType clipType, out PolyClipError error)
        {
            if (!IsSimple(subject))
            {
                throw new ArgumentException(
                          "Input subject polygon must be simple (cannot intersect themselves).", "subject");
            }
            if (!IsSimple(clip))
            {
                throw new ArgumentException("Input clip polygon must be simple (cannot intersect themselves).", "clip");
            }

            // Copy polygons.
            List <Vector2> slicedSubject;
            List <Vector2> slicedClip;

            // Calculate the intersection and touch points between subject and clip and add them to both.
            CalculateIntersections(subject, clip, out slicedSubject, out slicedClip);

            // Translate polygons into upper right quadrant as the algorithm depends on it.
            var     lbSubject = GetLowerBound(subject);
            var     lbClip    = GetLowerBound(clip);
            Vector2 translate;

            Vector2.Min(ref lbSubject, ref lbClip, out translate);
            translate = Vector2.One - translate;
            if (translate != Vector2.Zero)
            {
                for (int i = 0, count = slicedSubject.Count; i < count; ++i)
                {
                    slicedSubject[i] += translate;
                }
                for (int i = 0, count = slicedClip.Count; i < count; ++i)
                {
                    slicedClip[i] += translate;
                }
            }

            // Enforce counterclockwise contours.
            ForceCounterClockWise(slicedSubject);
            ForceCounterClockWise(slicedClip);

            // Build simplical chains from the polygons and calculate the the corresponding coefficients.
            List <Edge>  subjectSimplices;
            List <float> subjectCoefficient;
            List <Edge>  clipSimplices;
            List <float> clipCoefficient;

            CalculateSimplicalChain(slicedSubject, out subjectCoefficient, out subjectSimplices);
            CalculateSimplicalChain(slicedClip, out clipCoefficient, out clipSimplices);

            // Determine the characteristics function for all non-original edges
            // in subject and clip simplical chain and combine the edges contributing
            // to the result, depending on the clipType
            var resultSimplices = CalculateResultChain(
                subjectCoefficient,
                subjectSimplices,
                clipCoefficient,
                clipSimplices,
                clipType);

            // Convert result chain back to polygon(s).
            List <List <Vector2> > result;

            error = BuildPolygonsFromChain(resultSimplices, out result);

            // Reverse the polygon translation from the beginning
            // and remove collinear points from output
            translate *= -1.0f;
            foreach (var vertices in result)
            {
                for (int i = 0, count = vertices.Count; i < count; ++i)
                {
                    vertices[i] += translate;
                }
                Simplification.CollinearSimplify(vertices);
            }
            return(result);
        }