Ejemplo n.º 1
0
 /// <summary>
 /// Create a star detector with the specific parameters
 /// </summary>
 /// <param name="maxSize">
 /// Maximum size of the features. The following
 /// values of the parameter are supported:
 /// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128</param>
 /// <param name="responseThreshold">
 /// Threshold for the approximated laplacian,
 /// used to eliminate weak features. The larger it is,
 /// the less features will be retrieved
 /// </param>
 /// <param name="lineThresholdProjected">
 /// Another threshold for the laplacian to eliminate edges.
 /// The larger the threshold, the more points you get.
 /// </param>
 /// <param name="lineThresholdBinarized">
 /// Another threshold for the feature size to eliminate edges.
 /// The larger the threshold, the more points you get.</param>
 /// <param name="suppressNonmaxSize">
 ///
 /// </param>
 public StarDetector(int maxSize = 45, int responseThreshold = 30, int lineThresholdProjected = 10,
                     int lineThresholdBinarized = 8, int suppressNonmaxSize = 5)
 {
     _ptr = XFeatures2DInvoke.cveStarDetectorCreate(maxSize, responseThreshold, lineThresholdProjected,
                                                    lineThresholdBinarized, suppressNonmaxSize, ref _feature2D);
 }
Ejemplo n.º 2
0
 /// <summary>
 /// Create a Freak descriptor extractor.
 /// </summary>
 /// <param name="orientationNormalized">Enable orientation normalization</param>
 /// <param name="scaleNormalized">Enable scale normalization</param>
 /// <param name="patternScale">Scaling of the description pattern</param>
 /// <param name="nOctaves">Number of octaves covered by the detected keypoints.</param>
 public Freak(bool orientationNormalized = true, bool scaleNormalized = true, float patternScale = 22.0f,
              int nOctaves = 4)
 {
     _ptr = XFeatures2DInvoke.cveFreakCreate(orientationNormalized, scaleNormalized, patternScale, nOctaves,
                                             ref _feature2D, ref _sharedPtr);
 }
Ejemplo n.º 3
0
 /// <summary>
 /// Release the unmanaged memory associated with this PCTSignaturesSQFD object
 /// </summary>
 protected override void DisposeObject()
 {
     XFeatures2DInvoke.cvePCTSignaturesRelease(ref _ptr);
 }
Ejemplo n.º 4
0
 /// <summary>
 /// Computes Signature Quadratic Form Distance of two signatures.
 /// </summary>
 /// <param name="signature0">The first signature.</param>
 /// <param name="signature1">The second signature.</param>
 /// <returns>The Signature Quadratic Form Distance of two signatures</returns>
 public float ComputeQuadraticFormDistance(IInputArray signature0, IInputArray signature1)
 {
     using (InputArray iaSignature0 = signature0.GetInputArray())
         using (InputArray iaSignature1 = signature1.GetInputArray())
             return(XFeatures2DInvoke.cvePCTSignaturesSQFDComputeQuadraticFormDistance(_ptr, iaSignature0, iaSignature1));
 }
Ejemplo n.º 5
0
 /// <summary>
 /// Create a SURF detector using the specific values
 /// </summary>
 /// <param name="hessianThresh">
 /// Only features with keypoint.hessian larger than that are extracted.
 /// good default value is ~300-500 (can depend on the average local contrast and sharpness of the image).
 /// user can further filter out some features based on their hessian values and other characteristics
 /// </param>
 /// <param name="extended">
 /// false means basic descriptors (64 elements each),
 /// true means extended descriptors (128 elements each)
 /// </param>
 /// <param name="nOctaves">
 /// The number of octaves to be used for extraction.
 /// With each next octave the feature size is doubled
 /// </param>
 /// <param name="nOctaveLayers">
 /// The number of layers within each octave
 /// </param>
 /// <param name="upright">
 /// False means that detector computes orientation of each feature.
 /// True means that the orientation is not computed (which is much, much faster).
 /// For example, if you match images from a stereo pair, or do image stitching, the matched features likely have very similar angles, and you can speed up feature extraction by setting upright=true.</param>
 public SURF(double hessianThresh, int nOctaves = 4, int nOctaveLayers = 2, bool extended = true,
             bool upright = false)
 {
     _ptr = XFeatures2DInvoke.cveSURFCreate(hessianThresh, nOctaves, nOctaveLayers, extended, upright, ref _feature2D, ref _sharedPtr);
 }
Ejemplo n.º 6
0
 /// <summary>
 /// Create LATCH descriptor extractor
 /// </summary>
 /// <param name="bytes">The size of the descriptor - can be 64, 32, 16, 8, 4, 2 or 1</param>
 /// <param name="rotationInvariance">Whether or not the descriptor should compensate for orientation changes.</param>
 /// <param name="halfSsdSize">the size of half of the mini-patches size. For example, if we would like to compare triplets of patches of size 7x7x
 /// then the half_ssd_size should be (7-1)/2 = 3.</param>
 public LATCH(int bytes = 32, bool rotationInvariance = true, int halfSsdSize = 3)
 {
     _ptr = XFeatures2DInvoke.cveLATCHCreate(bytes, rotationInvariance, halfSsdSize, ref _feature2D, ref _sharedPtr);
 }
Ejemplo n.º 7
0
 public BoostDesc(int desc, bool useScaleOrientation, float scalefactor)
 {
     _ptr = XFeatures2DInvoke.cveBoostDescCreate(desc, useScaleOrientation, scalefactor, ref _feature2D);
 }
Ejemplo n.º 8
0
 /// <summary>
 /// Create a BRIEF descriptor extractor.
 /// </summary>
 /// <param name="descriptorSize">The size of descriptor. It can be equal 16, 32 or 64 bytes.</param>
 public BriefDescriptorExtractor(int descriptorSize = 32)
 {
     _ptr = XFeatures2DInvoke.cveBriefDescriptorExtractorCreate(descriptorSize, ref _feature2D);
 }
Ejemplo n.º 9
0
 /// <summary>
 /// Creates PCTSignatures algorithm using pre-generated sampling points and number of clusterization seeds. It uses the provided sampling points and generates its own clusterization seed indexes.
 /// </summary>
 /// <param name="initSamplingPoints">Sampling points used in image sampling.</param>
 /// <param name="initSeedCount">Number of initial clusterization seeds. Must be lower or equal to initSamplingPoints.size().</param>
 public PCTSignatures(VectorOfPointF initSamplingPoints, int initSeedCount)
 {
     _ptr = XFeatures2DInvoke.cvePCTSignaturesCreate2(initSamplingPoints, initSeedCount, ref _sharedPtr);
 }
Ejemplo n.º 10
0
 /// <summary>
 /// Creates PCTSignatures algorithm using pre-generated sampling points and clusterization seeds indexes.
 /// </summary>
 /// <param name="initSamplingPoints">Sampling points used in image sampling.</param>
 /// <param name="initClusterSeedIndexes">Indexes of initial clusterization seeds. Its size must be lower or equal to initSamplingPoints.size().</param>
 public PCTSignatures(VectorOfPointF initSamplingPoints, VectorOfInt initClusterSeedIndexes)
 {
     _ptr = XFeatures2DInvoke.cvePCTSignaturesCreate3(initSamplingPoints, initClusterSeedIndexes, ref _sharedPtr);
 }
Ejemplo n.º 11
0
 /// <summary>
 /// Creates PCTSignatures algorithm using sample and seed count. It generates its own sets of sampling points and clusterization seed indexes.
 /// </summary>
 /// <param name="initSampleCount">Number of points used for image sampling.</param>
 /// <param name="initSeedCount">Number of initial clusterization seeds. Must be lower or equal to initSampleCount</param>
 /// <param name="pointDistribution">Distribution of generated points.</param>
 public PCTSignatures(int initSampleCount = 2000, int initSeedCount = 400, PointDistributionType pointDistribution = PointDistributionType.Uniform)
 {
     _ptr = XFeatures2DInvoke.cvePCTSignaturesCreate(initSampleCount, initSeedCount, pointDistribution, ref _sharedPtr);
 }
Ejemplo n.º 12
0
 /// <summary>
 /// Obtain a GpuMat from the keypoints array
 /// </summary>
 /// <param name="src">The keypoints array</param>
 /// <param name="dst">A GpuMat that represent the keypoints</param>
 public void UploadKeypoints(VectorOfKeyPoint src, GpuMat dst)
 {
     XFeatures2DInvoke.cudaSURFUploadKeypoints(_ptr, src, dst);
 }
Ejemplo n.º 13
0
 /// <summary>
 /// Obtain the keypoints array from GpuMat
 /// </summary>
 /// <param name="src">The keypoints obtained from DetectKeyPointsRaw</param>
 /// <param name="dst">The vector of keypoints</param>
 public void DownloadKeypoints(GpuMat src, VectorOfKeyPoint dst)
 {
     XFeatures2DInvoke.cudaSURFDownloadKeypoints(_ptr, src, dst);
 }
Ejemplo n.º 14
0
 /// <summary>
 /// Release the unmanaged resource associate to the Detector
 /// </summary>
 protected override void DisposeObject()
 {
     XFeatures2DInvoke.cudaSURFDetectorRelease(ref _ptr);
 }
Ejemplo n.º 15
0
 /// <summary>
 /// Create a locally uniform comparison image descriptor.
 /// </summary>
 /// <param name="lucidKernel">Kernel for descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth</param>
 /// <param name="blurKernel">kernel for blurring image prior to descriptor construction, where 1=3x3, 2=5x5, 3=7x7 and so forth</param>
 public LUCID(int lucidKernel = 1, int blurKernel = 2)
 {
     _ptr = XFeatures2DInvoke.cveLUCIDCreate(lucidKernel, blurKernel, ref _feature2D, ref _sharedPtr);
 }