Ejemplo n.º 1
0
        static void Main(string[] args)
        {
            /// FaceDetectionWith_API
            Location[] coord = TestImage(fileName, Model.Hog);


            /// Face DetectionWith_DLIB
            using (var fd = Dlib.GetFrontalFaceDetector())
            {
                var img = Dlib.LoadImage <RgbPixel>(fileName);

                // find all faces in the image
                var faces = fd.Operator(img);
                foreach (var face in faces)
                {
                    // draw a rectangle for each face
                    Dlib.DrawRectangle(img, face, color: new RgbPixel(0, 255, 255), thickness: 4);
                }

                Dlib.SaveJpeg(img, outputName);
            }


            // The first thing we are going to do is load all our models.  First, since we need to
            // find faces in the image we will need a face detector:
            using (var detector = Dlib.GetFrontalFaceDetector())
                // We will also use a face landmarking model to align faces to a standard pose:  (see face_landmark_detection_ex.cpp for an introduction)
                using (var sp = ShapePredictor.Deserialize("shape_predictor_68_face_landmarks.dat"))
                    // And finally we load the DNN responsible for face recognition.
                    using (var net = DlibDotNet.Dnn.LossMetric.Deserialize("dlib_face_recognition_resnet_model_v1.dat"))

                        using (var img = Dlib.LoadImageAsMatrix <RgbPixel>(fileName))

                            using (var win = new ImageWindow(img))
                            {
                                var faces = new List <Matrix <RgbPixel> >();
                                foreach (var face in detector.Operator(img))
                                {
                                    var shape          = sp.Detect(img, face);
                                    var faceChipDetail = Dlib.GetFaceChipDetails(shape, 150, 0.25);
                                    var faceChip       = Dlib.ExtractImageChip <RgbPixel>(img, faceChipDetail);

                                    //faces.Add(move(face_chip));
                                    faces.Add(faceChip);

                                    win.AddOverlay(face);
                                }

                                if (!faces.Any())
                                {
                                    Console.WriteLine("No faces found in image!");
                                    return;
                                }

                                // This call asks the DNN to convert each face image in faces into a 128D vector.
                                // In this 128D vector space, images from the same person will be close to each other
                                // but vectors from different people will be far apart.  So we can use these vectors to
                                // identify if a pair of images are from the same person or from different people.
                                var faceDescriptors = net.Operator(faces);

                                // In particular, one simple thing we can do is face clustering.  This next bit of code
                                // creates a graph of connected faces and then uses the Chinese whispers graph clustering
                                // algorithm to identify how many people there are and which faces belong to whom.
                                var edges = new List <SamplePair>();
                                for (uint i = 0; i < faceDescriptors.Count; ++i)
                                {
                                    for (var j = i; j < faceDescriptors.Count; ++j)
                                    {
                                        // Faces are connected in the graph if they are close enough.  Here we check if
                                        // the distance between two face descriptors is less than 0.6, which is the
                                        // decision threshold the network was trained to use.  Although you can
                                        // certainly use any other threshold you find useful.
                                        var diff = faceDescriptors[i] - faceDescriptors[j];
                                        if (Dlib.Length(diff) < 0.6)
                                        {
                                            edges.Add(new SamplePair(i, j));
                                        }
                                    }
                                }

                                Dlib.ChineseWhispers(edges, 100, out var numClusters, out var labels);

                                // This will correctly indicate that there are 4 people in the image.
                                Console.WriteLine($"number of people found in the image: {numClusters}");


                                // Отобразим результат в ImageList
                                var winClusters = new List <ImageWindow>();
                                for (var i = 0; i < numClusters; i++)
                                {
                                    winClusters.Add(new ImageWindow());
                                }
                                var tileImages = new List <Matrix <RgbPixel> >();
                                for (var clusterId = 0ul; clusterId < numClusters; ++clusterId)
                                {
                                    var temp = new List <Matrix <RgbPixel> >();
                                    for (var j = 0; j < labels.Length; ++j)
                                    {
                                        if (clusterId == labels[j])
                                        {
                                            temp.Add(faces[j]);
                                        }
                                    }

                                    winClusters[(int)clusterId].Title = $"face cluster {clusterId}";
                                    var tileImage = Dlib.TileImages(temp);
                                    tileImages.Add(tileImage);
                                    winClusters[(int)clusterId].SetImage(tileImage);
                                }


                                // Finally, let's print one of the face descriptors to the screen.
                                using (var trans = Dlib.Trans(faceDescriptors[0]))
                                {
                                    Console.WriteLine($"face descriptor for one face: {trans}");

                                    // It should also be noted that face recognition accuracy can be improved if jittering
                                    // is used when creating face descriptors.  In particular, to get 99.38% on the LFW
                                    // benchmark you need to use the jitter_image() routine to compute the descriptors,
                                    // like so:
                                    var jitterImages = JitterImage(faces[0]).ToArray();
                                    var ret          = net.Operator(jitterImages);
                                    using (var m = Dlib.Mat(ret))
                                        using (var faceDescriptor = Dlib.Mean <float>(m))
                                            using (var t = Dlib.Trans(faceDescriptor))
                                            {
                                                Console.WriteLine($"jittered face descriptor for one face: {t}");

                                                // If you use the model without jittering, as we did when clustering the bald guys, it
                                                // gets an accuracy of 99.13% on the LFW benchmark.  So jittering makes the whole
                                                // procedure a little more accurate but makes face descriptor calculation slower.

                                                Console.WriteLine("hit enter to terminate");
                                                Console.ReadKey();

                                                foreach (var jitterImage in jitterImages)
                                                {
                                                    jitterImage.Dispose();
                                                }

                                                foreach (var tileImage in tileImages)
                                                {
                                                    tileImage.Dispose();
                                                }

                                                foreach (var edge in edges)
                                                {
                                                    edge.Dispose();
                                                }

                                                foreach (var descriptor in faceDescriptors)
                                                {
                                                    descriptor.Dispose();
                                                }

                                                foreach (var face in faces)
                                                {
                                                    face.Dispose();
                                                }
                                            }
                                }
                            }

            System.Console.ReadLine();
        }