Ejemplo n.º 1
0
        static void Main(string[] args)
        {
            InputLoader loader = new InputLoader();
            loader.LoadFile("digits.csv");
            Stopwatch sw = new Stopwatch();

            var heursiticDetection = new HeuristicDetection(10, 5, quantity:50, numberOfPoints:500);
            var hypothesis = new CurrentHypothesis();
            foreach (var input in loader.AllElements()) {
                ///For every new input we extract n points of interest
                ///And create a feature vector which characterizes the spatial relationship between these features
                ///For every heuristic we get a dictionary of points of interest
                DetectedPoints v = heursiticDetection.getFeatureVector(input.Item1);

                ///Compare this feature vector agaist each of the other feature vectors we know about
                sw.Reset();
                sw.Start();
                TestResult r = hypothesis.Predict(v);
                Debug.Print("Prediction: " + sw.Elapsed.Milliseconds.ToString());
                var best= r.BestResult();
                if(best != null && best.Item2 != 0){
                    LogProgress(best.Item1, input.Item2);
                }

                sw.Reset();
                sw.Start();
                hypothesis.Train(v, input.Item2, r);
                Debug.Print("Training: " + sw.Elapsed.Milliseconds.ToString());
                //heursiticDetection.pointsOfInterest.Add(HeuristicDetection.Generate(10, 5, 10));
            }
        }
Ejemplo n.º 2
0
 static void Main(string[] args)
 {
     InputLoader loader = new InputLoader();
     loader.LoadFile("digits.csv");
     Label l;
     int i = 0;
     DigitRecognizer recognizer = new DigitRecognizer();
     Dictionary<string, double> parameters = new Dictionary<string, double>() {
         {"NumberOfModels", 100},
         {"MaxNumberOfOperations", 100},
         {"Width", 28},
         {"Height", 28},
     };
     recognizer.ResetModels(parameters);
     while (true) {
         i = i % 25000;
         if (i == 0) i++;
         var a = loader.AccessElement(i, out l);
         recognizer.SetContext(a);
         recognizer.SetLabel(l);
         var output = recognizer.Test();
         recognizer.Train();
         i++;
     }
 }
Ejemplo n.º 3
0
        static void Main2(string[] args)
        {
            double purgeThreshold = .7;
            InputLoader loader = new InputLoader();
            loader.LoadFile("digits.csv");
            StreamProcessor processor = new StreamProcessor(28,28);
            //var count = processor.AddContextFeautres();
            //Debug.Print(count.ToString() + " context features added.");
            processor.GenerateRandomFeatures(1150);
            LinkedList<bool> rollingRightWrong = new LinkedList<bool>();
            int thresholdIdx = 2;
            int correct = 0;
            int i = 1;
            //for (int i = 1; i < 25000; i++) {
            while(true){
                i = i % 25000;

                //Debug.Print(i.ToString());
                Label l;
                var a = loader.AccessElement(i, out l);
                processor.SetNextFeautreContext(a, l);
                var output = processor.Predict();
                processor.Train();
                var best = output.BestResult();
                if (best != null && best.Item2 != 0) {
                    //Debug.Print(i.ToString() + "  " +
                    //    best.Item1.TextRepresentation + " "
                    //    + best.Item2.ToString());
                    //Debug.Print("Desired: " + processor.DataLabel.TextRepresentation);
                    bool guessedRight = processor.DataLabel.TextRepresentation == best.Item1.TextRepresentation;
                    rollingRightWrong.AddLast(guessedRight);
                    if (guessedRight) {
                        correct++;
                    }
                    if (rollingRightWrong.Count() > 100) {
                        if (rollingRightWrong.First()) {
                            correct--;
                        } rollingRightWrong.RemoveFirst();
                    }

                }

                //if(processor.PurgeFeautres(purgeThreshold) > 1000) purgeThreshold+= .01;
                if (i % 400 == 0) {

                    Debug.Print("Idx: " + i.ToString() + " " + ((double)correct / 100).ToString());
                    processor.PrintUtil(thresholdIdx);
                    thresholdIdx += 2;
                    //string output2 = processor.DescribeAllFeatures();
                    //Debug.Print(output2);
                }
                i++;
            }
            //Get the ability to quickly serialize good heuristics for the future
        }
Ejemplo n.º 4
0
        static void Main(string[] args)
        {
            Window window = new Window();
            ui = new UI();

            ui.LoadNext += new EventHandler(ui_LoadNext);
            loader = new InputLoader();
            loader.LoadFile("digits.csv");

            window.Content = ui;
            window.ShowDialog();
        }