Ejemplo n.º 1
0
 public void AddFrom(Vol V)
 {
     for (int k = 0; k < this.W.Length; k++)
     {
         this.W[k] += V.W[k];
     }
 }
Ejemplo n.º 2
0
        public Vol Forward(Vol V, bool is_training)
        {
            is_training = false;
            this.input  = V;
            var V2 = V.Clone();
            var N  = V.W.Length;

            if (is_training)
            {
                // do dropout
                for (var i = 0; i < N; i++)
                {
                    if ((float)r.NextDouble() < this.drop_prob)
                    {
                        V2.W[i] = 0; this.dropped[i] = true;
                    }                                        // drop!
                    else
                    {
                        this.dropped[i] = false;
                    }
                }
            }
            else
            {
                // scale the activations during prediction
                for (var i = 0; i < N; i++)
                {
                    V2.W[i] *= 0.5f;
                }
            }
            this.Output = V2;
            return(this.Output); // dummy identity function for now
        }
Ejemplo n.º 3
0
        public static Vol Image_To_Vol(double[] img, int width, int hight, bool convert_grayscale)
        {
            var p = img;
            var w = width;
            var h = hight;

            double[] pv = new double[img.Length];
            for (var i = 0; i < p.Length; i++)
            {
                pv[i] = (p[i] / 255.0 - 0.5); // normalize image pixels to [-0.5, 0.5]
            }
            var x = new Vol(w, h, 4, 0.0);

            x.W = pv;

            if (convert_grayscale)
            {
                var x1 = new Vol(w, h, 1, 0.0);
                for (int i = 0; i < w; i++)
                {
                    for (int j = 0; j < h; j++)
                    {
                        x1.Set(i, j, 0, x.Get(i, j, 0));
                    }
                }
                x = x1;
            }


            return(x);
        }
Ejemplo n.º 4
0
 public void AddFromScaled(Vol V, double a)
 {
     for (int k = 0; k < this.W.Length; k++)
     {
         this.W[k] += a * V.W[k];
     }
 }
        private void DLRNforWidth(Vol V, double n2, int x)
        {
            for (var y = 0; y < V.SY; y++)
            {
                for (var i = 0; i < V.Depth; i++)
                {
                    var chain_grad = this.Output.Get_Grad(x, y, i);
                    var S          = this.S_cache_.Get(x, y, i);
                    var SB         = Math.Pow(S, this.beta);
                    var SB2        = SB * SB;

                    // normalize in a window of size n
                    for (var j = Math.Max(0, i - n2); j <= Math.Min(i + n2, V.Depth - 1); j++)
                    {
                        var aj = V.Get(x, y, (int)j);
                        var g  = -aj *this.beta *Math.Pow(S, this.beta - 1) * this.alpha / this.n * 2 * aj;

                        if (j == i)
                        {
                            g += SB;
                        }
                        g /= SB2;
                        g *= chain_grad;
                        V.Add_Grad(x, y, (int)j, g);
                    }
                }
            }
        }
Ejemplo n.º 6
0
        public Vol Forward(Vol V, bool is_training)
        {
            this.input = V;
            var A = new Vol(1, 1, this.OutputDepth, 0.0f);

            this.Output = V;
            return(this.Output);
        }
        private void LRN(Vol V, Vol A, float n2)
        {
            var source = Enumerable.Range(0, V.Width);
            var pquery = from num in source.AsParallel()
                         select num;

            pquery.ForAll((x) => LRNforWidth(V, A, n2, x));
        }
Ejemplo n.º 8
0
        private void ConvFilter(Vol V, Vol tempOutput, int inputWidth, int inputHeight, int xy_stride, int d)
        {
            var source = Enumerable.Range(0, this.OutputHeight);
            var pquery = from num in source.AsParallel()
                         select num;

            pquery.ForAll((ay) => ConvOverRows(V, tempOutput, inputWidth, inputHeight, xy_stride, d, ay));
        }
        private void DLRN(Vol V, double n2)
        {
            var source = Enumerable.Range(0, V.SX);
            var pquery = from num in source.AsParallel()
                         select num;

            pquery.ForAll((x) => DLRNforWidth(V, n2, x));
        }
Ejemplo n.º 10
0
        public static Vol Augment(Vol V, int corp, int dx, int dy, bool fliplr)
        {
            //if (dx==0)
            //{
            //    dx = Util.Randi(0, V.SX - corp);
            //}
            //if (dy == 0)
            //{
            //    dy = Util.Randi(0, V.SY- corp);
            //}


            Vol W;

            if (corp != V.SX || dx != 0 || dy != 0)
            {
                W = new Vol(corp, corp, V.Depth, 0.0);
                for (int x = 0; x < corp; x++)
                {
                    for (int y = 0; y < corp; y++)
                    {
                        if (x + dx < 0 || x + dx >= V.SX || y + dy < 0 || y + dy >= V.SY)
                        {
                            continue;
                        }
                        for (int d = 0; d < V.Depth; d++)
                        {
                            W.Set(x, y, d, V.Get(x + dx, y + dy, d));
                        }
                    }
                }
            }
            else
            {
                W = V;
            }

            if (fliplr)
            {
                var W2 = W.CloneAndZero();

                for (int x = 0; x < W.SX; x++)
                {
                    for (int y = 0; y < W.SY; y++)
                    {
                        for (int d = 0; d < W.Depth; d++)
                        {
                            W2.Set(x, y, d, W.Get(W.SX - x - 1, y, d));
                        }
                    }
                }
                W = W2;
            }


            return(W);
        }
Ejemplo n.º 11
0
        public Vol Clone()
        {
            var v = new Vol(this.SX, this.SY, this.Depth, 0.0);
            var n = this.W.Length;

            for (int i = 0; i < n; i++)
            {
                v.W[i] = this.W[i];
            }
            return(v);
        }
Ejemplo n.º 12
0
        public Vol Clone()
        {
            var v = new Vol(this.Width, this.Height, this.Depth, 0.0f);
            var n = this.W.Length;

            for (int i = 0; i < n; i++)
            {
                v.W[i] = this.W[i];
            }
            return(v);
        }
Ejemplo n.º 13
0
        public Vol Forward(Vol V, bool is_training)
        {
            var act = this.Layers[0].Forward(V, is_training);

            for (int i = 1; i < this.Layers.Count; i++)
            {
                act = this.Layers[i].Forward(act, is_training);
            }
            act = this.LossLayer.Forward(act, is_training);
            return(act);
        }
Ejemplo n.º 14
0
        public Vol Forward(Vol V, bool is_training)
        {
            this.input = V;

            var A = new Vol(this.OutputWidth, this.OutputHeight, this.OutputDepth, 0.0f);

            Conv(V, is_training, A);

            this.Output = A;
            return(this.Output);
        }
Ejemplo n.º 15
0
        public static Vol Augment(Vol V, int corp)
        {
            int dx; int dy; bool fliplr = false;

            dx = (int)Util.Randi(0, V.Width - corp);


            dy = (int)Util.Randi(0, V.Height - corp);
            Vol W;

            if (corp != V.Width || dx != 0 || dy != 0)
            {
                W = new Vol(corp, corp, V.Depth, 0.0f);
                for (int x = 0; x < corp; x++)
                {
                    for (int y = 0; y < corp; y++)
                    {
                        if (x + dx < 0 || x + dx >= V.Width || y + dy < 0 || y + dy >= V.Height)
                        {
                            continue;
                        }
                        for (int d = 0; d < V.Depth; d++)
                        {
                            W.Set(x, y, d, V.Get(x + dx, y + dy, d));
                        }
                    }
                }
            }
            else
            {
                W = V;
            }

            if (fliplr)
            {
                var W2 = W.CloneAndZero();

                for (int x = 0; x < W.Width; x++)
                {
                    for (int y = 0; y < W.Height; y++)
                    {
                        for (int d = 0; d < W.Depth; d++)
                        {
                            W2.Set(x, y, d, W.Get(W.Width - x - 1, y, d));
                        }
                    }
                }
                W = W2;
            }


            return(W);
        }
Ejemplo n.º 16
0
        public Vol Forward(Vol V, bool is_training)
        {
            this.Input = V;
            var tempOutput = new Vol(this.OutputWidth | 0, this.OutputHeight | 0, this.OutputDepth | 0, 0.0);

            var inputWidth  = V.SX | 0;
            var inputHeight = V.SY | 0;
            var xy_stride   = this.Stride | 0;

            for (int d = 0; d < this.OutputDepth; d++)//for each output depth aka filters
            {
                var f = this.Filters[d];
                var x = -this.Pad | 0;
                var y = -this.Pad | 0;
                for (int ay = 0; ay < this.OutputHeight; y += xy_stride, ay++)// for each out height
                {
                    x = -this.Pad | 0;
                    for (var ax = 0; ax < this.OutputWidth; x += xy_stride, ax++) // for each out width
                    {
                        // xy_stride
                        // convolve centered at this particular location
                        var a = 0.0;
                        for (var fy = 0; fy < f.SY; fy++)     // for each element in the filter height
                        {
                            var oy = y + fy;                  // coordinates in the original input array coordinates
                            for (var fx = 0; fx < f.SX; fx++) // for each element in the filter width
                            {
                                //x is current width element of the output
                                //fx is the current width element of the filter
                                var ox = x + fx;
                                if (oy >= 0 && oy < inputHeight && ox >= 0 && ox < inputWidth)
                                {
                                    for (var fd = 0; fd < f.Depth; fd++) // for each filter depth or input depth
                                    {
                                        // multiply filter pixel by image pixel and add (shared weight filter)
                                        // avoid function call overhead (x2) for efficiency, compromise modularity :(
                                        //filter (fx,fy,fd) *
                                        //input (ox,oy,fd)
                                        a += f.W[((f.SX * fy) + fx) * f.Depth + fd] *
                                             V.W[((inputWidth * oy) + ox) * V.Depth + fd];
                                    }
                                }
                            }
                        }
                        a += this.Biases.W[d];
                        tempOutput.Set(ax, ay, d, a);
                    }
                }
            }
            this.Output = tempOutput;
            return(this.Output);
        }
        public Vol Forward(Vol V, bool is_training)
        {
            this.in_Act = V;

            var A = V.CloneAndZero();

            this.S_cache_ = V.CloneAndZero();
            var n2 = Math.Floor(this.n / 2);

            LRN(V, A, n2);

            this.Output = A;
            return(this.Output); // dummy identity function for now
        }
Ejemplo n.º 18
0
        public Vol Forward(Vol V, bool is_training)
        {
            this.in_Act = V;

            var A = new Vol(this.OutputWidth, this.OutputHeight, this.OutputDepth, 0.0);

            var n = 0; // a counter for switches

            for (var d = 0; d < this.OutputDepth; d++)
            {
                var x = -this.Pad;
                var y = -this.Pad;
                for (var ax = 0; ax < this.OutputWidth; x += this.Stride, ax++)
                {
                    y = -this.Pad;
                    for (var ay = 0; ay < this.OutputHeight; y += this.Stride, ay++)
                    {
                        // convolve centered at this particular location
                        double a = -99999; // hopefully small enough ;\
                        var    winx = -1; var winy = -1;
                        for (var fx = 0; fx < this.SX; fx++)
                        {
                            for (var fy = 0; fy < this.SY; fy++)
                            {
                                var oy = y + fy;
                                var ox = x + fx;
                                if (oy >= 0 && oy < V.SY && ox >= 0 && ox < V.SX)
                                {
                                    var v = V.Get(ox, oy, d);
                                    // perform max pooling and store pointers to where
                                    // the max came from. This will speed up backprop
                                    // and can help make nice visualizations in future
                                    if (v > a)
                                    {
                                        a = v; winx = ox; winy = oy;
                                    }
                                }
                            }
                        }
                        this.Switchx[n] = winx;
                        this.Switchy[n] = winy;
                        n++;
                        A.Set(ax, ay, d, a);
                    }
                }
            }
            this.Output = A;
            return(this.Output);
        }
Ejemplo n.º 19
0
        public Vol Forward(Vol V, bool is_training)
        {
            this.in_Act = V;
            var V2  = V.CloneAndZero();
            var N   = V.W.Length;
            var V2w = V2.W;
            var Vw  = V.W;

            for (var i = 0; i < N; i++)
            {
                V2w[i] = 1.0 / (1.0 + Math.Exp(-Vw[i]));
            }
            this.Output = V2;
            return(this.Output);
        }
Ejemplo n.º 20
0
        public Vol Forward(Vol V, bool is_training)
        {
            var act = this.Layers[0].Forward(V, is_training);

            for (int i = 1; i < this.Layers.Count; i++)
            {
                act = this.Layers[i].Forward(act, is_training);
                if (this.ForwardLayer != null)
                {
                    this.ForwardLayer(this.Layers[i], new EventArgs());
                }
            }
            act = this.LossLayer.Forward(act, is_training);
            return(act);
        }
Ejemplo n.º 21
0
        public Vol Forward(Vol V, bool is_training)
        {
            this.input = V;
            var V2  = V.CloneAndZero();
            var N   = V.W.Length;
            var V2w = V2.W;
            var Vw  = V.W;

            for (var i = 0; i < N; i++)
            {
                V2w[i] = (float)Math.Tanh(Vw[i]);
            }
            this.Output = V2;
            return(this.Output);
        }
Ejemplo n.º 22
0
        private void Conv(Vol V, bool is_training, Vol A)
        {
            var n = 0; // a counter for switches

            for (int d = 0; d < this.OutputDepth; d++)
            {
                for (var ax = 0; ax < this.OutputWidth; ax++)
                {
                    var x = -this.Pad;
                    x += (this.Stride * ax);
                    for (var ay = 0; ay < this.OutputHeight; ay++)
                    {
                        var y = -this.Pad;
                        y += (this.Stride * ay);
                        // convolve centered at this particular location
                        float a = -99999; // hopefully small enough ;\
                        var   winx = -1; var winy = -1;
                        for (var fx = 0; fx < this.KernelWidth; fx++)
                        {
                            for (var fy = 0; fy < this.KernelHeight; fy++)
                            {
                                var oy = y + fy;
                                var ox = x + fx;
                                if (oy >= 0 && oy < V.Height && ox >= 0 && ox < V.Width)
                                {
                                    var v = V.Get(ox, oy, d);
                                    // perform max pooling and store pointers to where
                                    // the max came from. This will speed up backprop
                                    // and can help make nice visualizations in future
                                    if (v > a)
                                    {
                                        a = v; winx = ox; winy = oy;
                                    }
                                }
                            }
                        }
                        this.Switchx[n] = winx;
                        this.Switchy[n] = winy;
                        n++;
                        A.Set(ax, ay, d, a);
                    }
                }
            }
            //var source = Enumerable.Range(0, this.OutputDepth);
            //var pquery = from num in source.AsParallel()
            //             select num;
            //  pquery.ForAll((d) => );
        }
Ejemplo n.º 23
0
        public Vol Forward(Vol V, bool is_training)
        {
            this.Input = V;
            var tempOutput = new Vol(this.OutputWidth | 0, this.OutputHeight | 0, this.OutputDepth | 0, 0.0f);

            var inputWidth  = V.Width | 0;
            var inputHeight = V.Height | 0;
            var xy_stride   = this.Stride | 0;

            for (int d = 0; d < this.OutputDepth; d++)
            {
                ConvFilter(V, tempOutput, inputWidth, inputHeight, xy_stride, d);
            }
            this.Output = tempOutput;
            return(this.Output);
        }
Ejemplo n.º 24
0
        public Vol Forward(Vol V, bool is_training)
        {
            this.in_Act = V;
            var V2  = V.Clone();
            var N   = V.W.Length;
            var V2w = V2.W;

            for (var i = 0; i < N; i++)
            {
                if (V2w[i] < 0)
                {
                    V2w[i] = 0;             // threshold at 0
                }
            }
            this.Output = V2;
            return(this.Output);
        }
Ejemplo n.º 25
0
        public Vol Forward(Vol V, bool is_training)
        {
            this.input = V;
            var A  = new Vol(1, 1, this.OutputDepth, 0.0f);
            var Vw = V.W;

            for (int i = 0; i < this.OutputDepth; i++)
            {
                var a  = 0.0f;
                var wi = this.Filters[i].W;
                for (var d = 0; d < this.num_inputs; d++)
                {
                    a += Vw[d] * wi[d];
                }
                a     += this.Biases.W[i];
                A.W[i] = a;
            }
            this.Output = A;
            return(this.Output);
        }
Ejemplo n.º 26
0
        public Vol Forward(Vol V, bool is_training)
        {
            this.in_Act = V;
            var A  = new Vol(1, 1, this.OutputDepth, 0.0);
            var Vw = V.W;

            for (var i = 0; i < this.OutputDepth; i++)
            {
                var a  = 0.0;
                var wi = this.Filters[i].W;
                for (var d = 0; d < this.num_inputs; d++)
                {
                    a += Vw[d] * wi[d]; // for efficiency use Vols directly for now
                }
                a     += this.Biases.W[i];
                A.W[i] = a;
            }
            this.Output = A;
            return(this.Output);
        }
Ejemplo n.º 27
0
        public Vol Forward(Vol V, bool is_training)
        {
            this.in_Act = V;

            var A = new Vol(1, 1, this.Out_Depth, 0.0);

            // compute max activation
            var ass  = V.W;
            var amax = V.W[0];

            for (var i = 1; i < this.Out_Depth; i++)
            {
                if (ass[i] > amax)
                {
                    amax = ass[i];
                }
            }

            // compute exponentials (carefully to not blow up)
            var es   = new double[this.Out_Depth];
            var esum = 0.0;

            for (var i = 0; i < this.Out_Depth; i++)
            {
                var e = Math.Exp(ass[i] - amax);
                esum += e;
                es[i] = e;
            }

            // normalize and output to sum to one
            for (var i = 0; i < this.Out_Depth; i++)
            {
                es[i] /= esum;
                A.W[i] = es[i];
            }

            this.es     = es; // save these for backprop
            this.Output = A;
            return(this.Output);
        }
Ejemplo n.º 28
0
        public Policy policy(double[] s)
        {
            // compute the value of doing any action in this state
            // and return the argmax action and its value
            var svol = new Vol(1, 1, this.net_inputs);

            svol.W = s;
            var action_values = this.value_net.Forward(svol, false);
            var maxk          = 0;
            var maxval        = action_values.W[0];

            for (var k = 1; k < this.num_actions; k++)
            {
                if (action_values.W[k] > maxval)
                {
                    maxk = k; maxval = action_values.W[k];
                }
            }
            return(new Policy()
            {
                action = maxk, value = maxval
            });
        }
        private void LRNforWidth(Vol V, Vol A, double n2, int x)
        {
            for (var y = 0; y < V.SY; y++)
            {
                for (var i = 0; i < V.Depth; i++)
                {
                    var ai = V.Get(x, y, i);

                    // normalize in a window of size n
                    var den = 0.0;
                    for (var j = Math.Max(0, i - n2); j <= Math.Min(i + n2, V.Depth - 1); j++)
                    {
                        var aa = V.Get(x, y, (int)j);
                        den += aa * aa;
                    }
                    den *= this.alpha / this.n;
                    den += this.k;
                    this.S_cache_.Set(x, y, i, den); // will be useful for backprop
                    den = Math.Pow(den, this.beta);
                    A.Set(x, y, i, ai / den);
                }
            }
        }
Ejemplo n.º 30
0
        private void ConvOverRows(Vol V, Vol tempOutput, int inputWidth, int inputHeight, int xy_stride, int d, int ay)
        {
            var y = (-this.Pad | 0) + (xy_stride * ay);
            var f = this.Filters[d];

            for (var ax = 0; ax < this.OutputWidth; ax++) // for each out width
            {
                var x = (-this.Pad | 0) + (xy_stride * ax);
                // convolve centered at this particular location
                var a = 0.0;
                for (var fy = 0; fy < f.Height; fy++)    // for each element in the filter height
                {
                    var oy = y + fy;                     // coordinates in the original input array coordinates
                    for (var fx = 0; fx < f.Width; fx++) // for each element in the filter width
                    {
                        //x is current width element of the output
                        //fx is the current width element of the filter
                        var ox = x + fx;
                        if (oy >= 0 && oy < inputHeight && ox >= 0 && ox < inputWidth)
                        {
                            for (var fd = 0; fd < f.Depth; fd++) // for each filter depth or input depth
                            {
                                // multiply filter pixel by image pixel and add (shared weight filter)
                                // avoid function call overhead (x2) for efficiency, compromise modularity :(
                                //filter (fx,fy,fd) *
                                //input (ox,oy,fd)
                                a += f.W[((f.Width * fy) + fx) * f.Depth + fd] *
                                     V.W[((inputWidth * oy) + ox) * V.Depth + fd];
                            }
                        }
                    }
                }
                a += this.Biases.W[d];

                tempOutput.Set(ax, ay, d, (float)a);
            }
        }