Ejemplo n.º 1
0
        //Reverse the edge. Used in the Max Bipartite Matching algorithm.
        public void reverseEdge()
        {
            if (source.removeEdge(this))
            {
                target.insertEdge(this);

                Vertex tmp = source;
                source = target;
                target = tmp;
            }
        }
        public int topDownUnorderedMaxCommonSubtreeIso(Node r1, Node r2)
        {
            //Cannot find a isomophism when the labels differ
            if (r1.getId() != r2.getId())
            {
                return(0);
            }

            //The isomorphism has size 0 or 1 if one of the nodes are leaf nodes
            if (r1.isLeaf() || r2.isLeaf())
            {
                return((r1.getId() == r2.getId()) ? 1 : 0);
            }

            int result;

            Node rp1 = r1.Parent;
            Node rp2 = r2.Parent;

            //Use LCS if r1 and r2 are root nodes in subtrees that represents method bodies.
            if ((rp1 != null && r1.getId() == SyntaxKind.Block && rp1.getId() == SyntaxKind.MethodDeclaration) &&
                (rp2 != null && r2.getId() == SyntaxKind.Block && rp2.getId() == SyntaxKind.MethodDeclaration))
            {
                int res = lcs(r1, r2);
                result = res;
            }
            else
            {
                int p = r1.Size;
                int q = r2.Size;

                //Each child of r1 has a corresponding vertex in the bipartite graph. A map from node to vertex.
                Dictionary <Node, Vertex> T1G = new Dictionary <Node, Vertex>(p);
                //Each child of r2 has a corresponding vertex in the bipartite graph. A map from node to vertex.
                Dictionary <Node, Vertex> T2G = new Dictionary <Node, Vertex>(q);
                //A map from vertex to node.
                Dictionary <Vertex, Node> GT = new Dictionary <Vertex, Node>(p + q);

                //There is maximum p*q edges in the bipartite graph.
                List <Edge> edges = new List <Edge>(p * q);

                //The vertices that represents the children of r1.
                List <Vertex> U = new List <Vertex>(p);

                foreach (Node v1 in r1.Children)
                {
                    //q is the number of neighbors that v can have in the bipartite graph.
                    Vertex v = new Vertex(q);

                    U.Add(v);

                    GT.Add(v, v1);
                    T1G.Add(v1, v);
                }

                //The vertices that represents the children of r2.
                List <Vertex> W = new List <Vertex>(q);

                foreach (Node v2 in r2.Children)
                {
                    //p is the number of neighbors that w can have in the bipartite graph.
                    Vertex w = new Vertex(p);

                    W.Add(w);

                    GT.Add(w, v2);
                    T2G.Add(v2, w);
                }

                //List of matched edges
                List <Edge> list = null;

                foreach (Node v1 in r1.Children)
                {
                    foreach (Node v2 in r2.Children)
                    {
                        //Find max common subtree between v1 and v2
                        int res = topDownUnorderedMaxCommonSubtreeIso(v1, v2);

                        //If max common subtree
                        if (res != 0)
                        {
                            Vertex v = T1G[v1];

                            //Insert edge between v1 and v2
                            Edge e = v.insertEdge(T2G[v2]);

                            //Set cost of edge to res (size of max common subtree)
                            e.setCost(res);

                            edges.Add(e);
                        }
                    }
                }

                //Find the children of r1 and r2 that are part of r1's and r2's max common subtree
                BipartiteMatching bm = new BipartiteMatching();
                list = bm.maxWeightBipartiteMatching(U, W, edges, p, q);

                //Can map r1 to r2
                int ress = 1;

                //Go through the mached edges in the bipartite graph
                foreach (Edge e in list)
                {
                    List <Node> nodeList;

                    //All edges goes from the children of r1 to the children of r2
                    Node v = GT[e.getSource()];
                    Node w = GT[e.getTarget()];

                    //v is already in B
                    if (bMap.ContainsKey(v))
                    {
                        nodeList = bMap[v];
                    }

                    //First time we insert v. Create a list for the nodes that can be mapped to v.
                    else
                    {
                        nodeList = new List <Node>(100);
                    }

                    //Insert w into the list
                    nodeList.Add(w);
                    bMap[v] = nodeList;

                    //Add the size of the max common subtree between v and w to res.
                    ress += e.getCost();
                }

                result = ress;
            }
            return(result);
        }
        public int topDownUnorderedMaxCommonSubtreeIso(Node r1, Node r2)
        {
            //Cannot find a isomophism when the labels differ
            if (r1.getId() != r2.getId())
            {
                return 0;
            }

            //The isomorphism has size 0 or 1 if one of the nodes are leaf nodes
            if (r1.isLeaf() || r2.isLeaf())
            {
                return (r1.getId() == r2.getId()) ? 1 : 0;
            }

            int result;

            Node rp1 = r1.Parent;
            Node rp2 = r2.Parent;

                //Use LCS if r1 and r2 are root nodes in subtrees that represents method bodies.
            if ((rp1 != null && r1.getId() == SyntaxKind.Block && rp1.getId() == SyntaxKind.MethodDeclaration)
                && (rp2 != null && r2.getId() == SyntaxKind.Block && rp2.getId() == SyntaxKind.MethodDeclaration))
            {
                int res = lcs(r1, r2);
                result = res;
            }
            else
            {
                int p = r1.Size;
                int q = r2.Size;

                //Each child of r1 has a corresponding vertex in the bipartite graph. A map from node to vertex.
                Dictionary<Node, Vertex> T1G = new Dictionary<Node, Vertex>(p);
                //Each child of r2 has a corresponding vertex in the bipartite graph. A map from node to vertex.
                Dictionary<Node, Vertex> T2G = new Dictionary<Node, Vertex>(q);
                //A map from vertex to node.
                Dictionary<Vertex, Node> GT = new Dictionary<Vertex, Node>(p + q);

                //There is maximum p*q edges in the bipartite graph.
                List<Edge> edges = new List<Edge>(p * q);

                //The vertices that represents the children of r1.
                List<Vertex> U = new List<Vertex>(p);

                foreach (Node v1 in r1.Children)
                {
                    //q is the number of neighbors that v can have in the bipartite graph.
                    Vertex v = new Vertex(q);

                    U.Add(v);

                    GT.Add(v, v1);
                    T1G.Add(v1, v);
                }

                //The vertices that represents the children of r2.
                List<Vertex> W = new List<Vertex>(q);

                foreach (Node v2 in r2.Children)
                {
                    //p is the number of neighbors that w can have in the bipartite graph.
                    Vertex w = new Vertex(p);

                    W.Add(w);

                    GT.Add(w, v2);
                    T2G.Add(v2, w);
                }

                //List of matched edges
                List<Edge> list = null;

                foreach (Node v1 in r1.Children)
                {
                    foreach (Node v2 in r2.Children)
                    {

                        //Find max common subtree between v1 and v2
                        int res = topDownUnorderedMaxCommonSubtreeIso(v1, v2);

                        //If max common subtree
                        if (res != 0)
                        {
                            Vertex v = T1G[v1];

                            //Insert edge between v1 and v2
                            Edge e = v.insertEdge(T2G[v2]);

                            //Set cost of edge to res (size of max common subtree)
                            e.setCost(res);

                            edges.Add(e);
                        }
                    }
                }

                //Find the children of r1 and r2 that are part of r1's and r2's max common subtree
                BipartiteMatching bm = new BipartiteMatching();
                list = bm.maxWeightBipartiteMatching(U, W, edges, p, q);

                //Can map r1 to r2
                int ress = 1;

                //Go through the mached edges in the bipartite graph
                foreach (Edge e in list)
                {
                    List<Node> nodeList;

                    //All edges goes from the children of r1 to the children of r2
                    Node v = GT[e.getSource()];
                    Node w = GT[e.getTarget()];

                    //v is already in B
                    if (bMap.ContainsKey(v))
                    {
                        nodeList = bMap[v];
                    }

                    //First time we insert v. Create a list for the nodes that can be mapped to v.
                    else
                    {
                        nodeList = new List<Node>(100);
                    }

                    //Insert w into the list
                    nodeList.Add(w);
                    bMap[v] = nodeList;

                    //Add the size of the max common subtree between v and w to res.
                    ress += e.getCost();
                }

                result = ress;
            }
            return result;
        }