Ejemplo n.º 1
0
        public void RunBostonTest()
        {
            var workdir = Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory, "testbed", "boston");
            var dsPath  = Path.Combine(workdir, "housing.data");

            try
            {
                DownloadHelpers.DownloadDataset(
                    "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data",
                    dsPath);
            }
            catch (WebException)
            {
                Assert.Fail("Failed to download Boston dataset");
            }

            var newDsPath = Path.Combine(workdir, "housing.csv");

            File.WriteAllText(newDsPath, "");
            File.AppendAllLines(
                newDsPath,
                File.ReadLines(dsPath).Select(x => Regex.Replace(x.Trim(), @"\s+", ","))
                );
            dsPath = newDsPath;

            MLContext mlContext = new MLContext();

            var model = new CatBoostModel(
                Path.Combine(workdir, "boston_housing_model.cbm"),
                "MedV"
                );

            IDataView dataView = mlContext.Data.LoadFromTextFile <BostonDataPoint>(dsPath, hasHeader: false, separatorChar: ',');
            IEnumerable <BostonDataPoint> dataPoints = mlContext.Data.CreateEnumerable <BostonDataPoint>(dataView, reuseRowObject: false);

            var predictions = model.Transform(dataView);
            IEnumerable <CatBoostValuePrediction> predictionsBatch = mlContext.Data.CreateEnumerable <CatBoostValuePrediction>(predictions, reuseRowObject: false);

            var deltas = dataPoints
                         .Zip(predictionsBatch, Tuple.Create)
                         .Zip(Enumerable.Range(1, predictionsBatch.Count()), Tuple.Create)
                         .Select(rec => new
            {
                Index    = rec.Item2,
                LogDelta = Math.Abs(rec.Item1.Item2.OutputValues[0] - Math.Log(rec.Item1.Item1.MedV)),
                Pred     = Math.Exp(rec.Item1.Item2.OutputValues[0]),
                Target   = rec.Item1.Item1.MedV
            });

            int totalErrors = deltas.Where(x => x.LogDelta >= .4).Count();

            Assert.IsTrue(
                totalErrors <= 7,
                $"Boston test crashed: expected <= 7 errors, got {totalErrors} error(s) on samples {{" +
                string.Join(
                    ", ",
                    deltas.Where(x => x.LogDelta >= .4).Take(8).Select(x => x.Index + 1)
                    ) + ", ...}"
                );
        }
Ejemplo n.º 2
0
        public void RunIrisTest()
        {
            var workdir = Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory, "testbed", "iris");
            var dsPath  = Path.Combine(workdir, "iris.data");

            try
            {
                DownloadHelpers.DownloadDataset(
                    "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data",
                    dsPath);
            }
            catch (WebException)
            {
                Assert.Fail("Failed to download Iris dataset");
            }

            MLContext mlContext = new MLContext();

            var model = new CatBoostModel(
                Path.Combine(workdir, "iris_model.cbm"),
                "IrisType"
                );

            IDataView dataView = mlContext.Data.LoadFromTextFile <IrisDataPoint>(dsPath, hasHeader: false, separatorChar: ',');
            IEnumerable <IrisDataPoint> dataPoints = mlContext.Data.CreateEnumerable <IrisDataPoint>(dataView, reuseRowObject: false);

            var predictions = model.Transform(dataView);
            IEnumerable <CatBoostValuePrediction> predictionsBatch = mlContext.Data.CreateEnumerable <CatBoostValuePrediction>(predictions, reuseRowObject: false);

            string[] targetLabelList = new string[] { "Iris-setosa", "Iris-versicolor", "Iris-virginica" };

            int        i         = 0;
            List <int> failedIds = new List <int>();

            foreach (var xy in dataPoints.Zip(predictionsBatch, Tuple.Create))
            {
                ++i;
                (var x, var y) = xy;
                int    argmax    = Enumerable.Range(0, y.OutputValues.Length).Select(j => Tuple.Create(y.OutputValues[j], j)).Max().Item2;
                string predLabel = targetLabelList[argmax];
                if (predLabel != x.IrisType)
                {
                    failedIds.Add(i);
                }
            }
            Assert.IsTrue(failedIds.Count == 0, $"Iris test crashed on sample #{string.Join(",", failedIds.Select(x => x.ToString()).ToArray())}");
        }
Ejemplo n.º 3
0
        public void RunMushroom()
        {
            var workdir = Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory, "testbed", "mushrooms");
            var dsPath  = Path.Combine(workdir, "mushrooms.csv");

            try
            {
                DownloadHelpers.DownloadDataset(
                    "https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data",
                    dsPath);
            }
            catch (WebException)
            {
                Assert.Fail("Failed to download Mushroom dataset");
            }

            MLContext mlContext = new MLContext();

            var model = new CatBoostModel(
                Path.Combine(workdir, "mushroom_model.cbm"),
                "Class"
                );

            IDataView dataView = mlContext.Data.LoadFromTextFile <MushroomDataPoint>(dsPath, hasHeader: false, separatorChar: ',');
            IEnumerable <MushroomDataPoint> dataPoints = mlContext.Data.CreateEnumerable <MushroomDataPoint>(dataView, reuseRowObject: false);

            var predictions = model.Transform(dataView);
            IEnumerable <CatBoostValuePrediction> predictionsBatch = mlContext.Data.CreateEnumerable <CatBoostValuePrediction>(predictions, reuseRowObject: false);

            string[] targetLabelList = new string[] { "e", "p" };

            int i = 0;

            foreach (var xy in dataPoints.Zip(predictionsBatch, Tuple.Create))
            {
                (var x, var y) = xy;

                int    argmax    = (y.OutputValues[0] > 0) ? 1 : 0;
                string predLabel = targetLabelList[argmax];

                Assert.IsTrue(
                    predLabel == x.Class,
                    $"Mushroom test crashed on sample {i + 1}"
                    );
            }
        }
Ejemplo n.º 4
0
        public void RunIrisTest()
        {
            var workdir = Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory, "testbed", "iris");
            var dsPath  = Path.Combine(workdir, "iris.data");

            try {
                DownloadHelpers.DownloadDataset(
                    "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data",
                    dsPath);
            } catch (WebException) {
                Assert.Fail("Failed to download Iris dataset");
            }

            var df = Frame.ReadCsv(dsPath, hasHeaders: false);

            df.RenameColumns(new Collection <string>
            {
                "sepal length", "sepal width", "petal length", "petal width", "target"
            });
            var target = df.Rows.Select(obj => obj.Value["target"]).Values.Select(x => (string)x).ToArray();

            df.DropColumn("target");
            var data = df.ToArray2D <float>();

            var model = new CatBoostModelEvaluator(Path.Combine(workdir, "iris_model.cbm"));

            model.CatFeaturesIndices = new Collection <int> {
            };
            double[,] res            = model.EvaluateBatch(data, new string[df.RowCount, 0]);

            string[] targetLabelList = new string[] { "Iris-setosa", "Iris-versicolor", "Iris-virginica" };
            string   errors          = "";

            for (int i = 0; i < res.GetLength(0); ++i)
            {
                int    argmax    = Enumerable.Range(0, res.GetLength(1)).Select(j => Tuple.Create(res[i, j], j)).Max().Item2;
                string predLabel = targetLabelList[argmax];
                if (predLabel != target[i])
                {
                    errors += $"#{i + 1} ";
                }
            }
            Assert.AreEqual(errors.Length, 1, $"Iris test failed on samples: #{errors}");
        }
Ejemplo n.º 5
0
        public void RunMushroomTest()
        {
            var workdir = Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory, "testbed", "mushrooms");
            var dsPath  = Path.Combine(workdir, "mushrooms.csv");

            try
            {
                DownloadHelpers.DownloadDataset(
                    "https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data",
                    dsPath);
            }
            catch (WebException)
            {
                Assert.Fail("Failed to download Mushroom dataset");
            }

            var df     = Frame.ReadCsv(dsPath, hasHeaders: false);
            var target = df.Rows.Select(obj => obj.Value["Column1"]).Values.Select(x => (string)x).ToArray();

            df.DropColumn("Column1");
            var data = df.ToArray2D <string>();

            var model = new CatBoostModelEvaluator(Path.Combine(workdir, "mushroom_model.cbm"));

            model.CatFeaturesIndices = Enumerable.Range(0, df.ColumnCount).ToList();
            double[,] res            = model.EvaluateBatch(new float[df.RowCount, 0], data);

            string[] targetLabelList = new string[] { "e", "p" };
            for (int i = 0; i < res.GetLength(0); ++i)
            {
                int    argmax    = res[i, 0] > 0 ? 1 : 0;
                string predLabel = targetLabelList[argmax];

                Assert.IsTrue(
                    predLabel == target[i],
                    $"Mushroom test crashed on sample {i + 1}"
                    );
            }
        }
Ejemplo n.º 6
0
        public void RunBostonTest()
        {
            var workdir = Path.Combine(System.AppDomain.CurrentDomain.BaseDirectory, "testbed", "boston");
            var dsPath  = Path.Combine(workdir, "housing.data");

            try
            {
                DownloadHelpers.DownloadDataset(
                    "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data",
                    dsPath);
            }
            catch (WebException)
            {
                Assert.Fail("Failed to download Boston dataset");
            }

            List <float[]> featureList = new List <float[]>();
            List <double>  targetList  = new List <double>();

            using (TextReader textReader = new StreamReader(dsPath))
            {
                while (textReader.Peek() != -1)
                {
                    var tokens = textReader.ReadLine().Split(' ').ToList().Where(x => x != "");
                    targetList.Add(double.Parse(tokens.Last()));
                    featureList.Add(tokens.SkipLast(1).Select(x => float.Parse(x)).ToArray());
                }
            }

            if (featureList.Where(x => x.Length != featureList.First().Length).Any())
            {
                throw new InvalidDataException("Inconsistent column count in housing.data");
            }

            double[] target = targetList.ToArray();
            float[,] features = new float[featureList.Count, featureList.First().Length];
            for (int i = 0; i < featureList.Count; ++i)
            {
                for (int j = 0; j < featureList.First().Length; ++j)
                {
                    features[i, j] = featureList[i][j];
                }
            }

            var model = new CatBoostModelEvaluator(Path.Combine(workdir, "boston_housing_model.cbm"));

            model.CatFeaturesIndices = new Collection <int> {
            };
            double[,] res            = model.EvaluateBatch(features, new string[featureList.Count, 0]);

            var deltas = Enumerable.Range(0, featureList.Count).Select(i => new
            {
                Index    = i + 1,
                LogDelta = Math.Abs(res[i, 0] - Math.Log(target[i])),
                Pred     = Math.Exp(res[i, 0]),
                Target   = target[i]
            });

            int totalErrors = deltas.Where(x => x.LogDelta >= .4).Count();

            Assert.IsTrue(
                totalErrors <= 7,
                $"Boston test crashed: expected <= 7 errors, got {totalErrors} error(s) on samples {{" +
                string.Join(
                    ", ",
                    deltas.Where(x => x.LogDelta >= .4).Take(8).Select(x => x.Index + 1)
                    ) + ", ...}"
                );
        }