Ejemplo n.º 1
0
		/// <summary> Compresses the code-block in 'srcblk' and puts the results in 'ccb',
		/// using the specified options and temporary storage.
		/// 
		/// </summary>
		/// <param name="c">The component for which to return the next code-block.
		/// 
		/// </param>
		/// <param name="ccb">The object where the compressed data will be stored. If the
		/// 'data' array of 'cbb' is not null it may be reused to return the
		/// compressed data.
		/// 
		/// </param>
		/// <param name="srcblk">The code-block data to code
		/// 
		/// </param>
		/// <param name="mq">The MQ-coder to use
		/// 
		/// </param>
		/// <param name="bout">The bit level output to use. Used only if 'OPT_BYPASS' is
		/// turned on in the 'options' argument.
		/// 
		/// </param>
		/// <param name="out">The byte buffer trough which the compressed data is stored.
		/// 
		/// </param>
		/// <param name="state">The state information for the code-block
		/// 
		/// </param>
		/// <param name="distbuf">The buffer where to store the distortion  at 
		/// the end of each coding pass.
		/// 
		/// </param>
		/// <param name="ratebuf">The buffer where to store the rate (i.e. coded lenth) at 
		/// the end of each coding pass.
		/// 
		/// </param>
		/// <param name="istermbuf">The buffer where to store the terminated flag for each 
		/// coding pass.
		/// 
		/// </param>
		/// <param name="symbuf">The buffer to hold symbols to send to the MQ coder
		/// 
		/// </param>
		/// <param name="ctxtbuf">A buffer to hold the contexts to use in sending the
		/// buffered symbols to the MQ coder.
		/// 
		/// </param>
		/// <param name="options">The options to use when coding this code-block
		/// 
		/// </param>
		/// <param name="rev">The reversible flag. Should be true if the source of this
		/// code-block's data is reversible.
		/// 
		/// </param>
		/// <param name="lcType">The type of length calculation to use with the MQ coder.
		/// 
		/// </param>
		/// <param name="tType">The type of termination to use with the MQ coder.
		/// 
		/// </param>
		/// <seealso cref="getNextCodeBlock">
		/// 
		/// </seealso>
		static private void  compressCodeBlock(int c, CBlkRateDistStats ccb, CBlkWTData srcblk, MQCoder mq, BitToByteOutput bout, ByteOutputBuffer out_Renamed, int[] state, double[] distbuf, int[] ratebuf, bool[] istermbuf, int[] symbuf, int[] ctxtbuf, int options, bool rev, int lcType, int tType)
		{
			// NOTE: This method should not access any non-final instance or
			// static variables, either directly or indirectly through other
			// methods in order to be sure that the method is thread safe.
			
			int[] zc_lut; // The ZC lookup table to use
			int skipbp; // The number of non-significant bit-planes to skip
			int curbp; // The current magnitude bit-plane (starts at 30)
			int[] fm; // The distortion estimation lookup table for MR
			int[] fs; // The distortion estimation lookup table for SC
			int lmb; // The least significant magnitude bit
			int npass; // The number of coding passes, for R-D statistics
			double msew; // The distortion (MSE weight) for the current bit-plane
			double totdist; // The total cumulative distortion decrease
			int ltpidx; // The index of the last pass which is terminated
			
			// Check error-resilient termination
			if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_PRED_TERM) != 0 && tType != MQCoder.TERM_PRED_ER)
			{
				throw new System.ArgumentException("Embedded error-resilient info " + "in MQ termination option " + "specified but incorrect MQ " + "termination " + "policy specified");
			}
			// Set MQ flags
			mq.LenCalcType = lcType;
			mq.TermType = tType;
			
			lmb = 30 - srcblk.magbits + 1;
			// If there are more bit-planes to code than the implementation
			// bit-depth set lmb to 0
			lmb = (lmb < 0)?0:lmb;
			
			// Reset state
			ArrayUtil.intArraySet(state, 0);
			
			// Find the most significant bit-plane
			skipbp = calcSkipMSBP(srcblk, lmb);
			
			// Initialize output code-block
			ccb.m = srcblk.m;
			ccb.n = srcblk.n;
			ccb.sb = srcblk.sb;
			ccb.nROIcoeff = srcblk.nROIcoeff;
			ccb.skipMSBP = skipbp;
			if (ccb.nROIcoeff != 0)
			{
				ccb.nROIcp = 3 * (srcblk.nROIbp - skipbp - 1) + 1;
			}
			else
			{
				ccb.nROIcp = 0;
			}
			
			// Choose correct ZC lookup table for global orientation
			switch (srcblk.sb.orientation)
			{
				
				case Subband.WT_ORIENT_HL: 
					zc_lut = ZC_LUT_HL;
					break;
				
				case Subband.WT_ORIENT_LL: 
				case Subband.WT_ORIENT_LH: 
					zc_lut = ZC_LUT_LH;
					break;
				
				case Subband.WT_ORIENT_HH: 
					zc_lut = ZC_LUT_HH;
					break;
				
				default: 
					throw new System.InvalidOperationException("JJ2000 internal error");
				
			}
			
			// Loop on significant magnitude bit-planes doing the 3 passes
			curbp = 30 - skipbp;
			fs = FS_LOSSY;
			fm = FM_LOSSY;
			msew = System.Math.Pow(2, ((curbp - lmb) << 1) - MSE_LKP_FRAC_BITS) * srcblk.sb.stepWMSE * srcblk.wmseScaling;
			totdist = 0f;
			npass = 0;
			ltpidx = - 1;
			
			// First significant bit-plane has only the pass pass
			if (curbp >= lmb)
			{
				// Do we need the "lossless" 'fs' table ?
				if (rev && curbp == lmb)
				{
					fs = FM_LOSSLESS;
				}
				// We terminate if regular termination, last bit-plane, or next
				// bit-plane is "raw".
				istermbuf[npass] = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0 || curbp == lmb || ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && (31 - CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_NON_BYPASS_MS_BP - skipbp) >= curbp);
				totdist += cleanuppass(srcblk, mq, istermbuf[npass], curbp, state, fs, zc_lut, symbuf, ctxtbuf, ratebuf, npass, ltpidx, options) * msew;
				distbuf[npass] = totdist;
				if (istermbuf[npass])
					ltpidx = npass;
				npass++;
				msew *= 0.25;
				curbp--;
			}
			// Other bit-planes have all passes
			while (curbp >= lmb)
			{
				// Do we need the "lossless" 'fs' and 'fm' tables ?
				if (rev && curbp == lmb)
				{
					fs = FS_LOSSLESS;
					fm = FM_LOSSLESS;
				}
				
				// Do the significance propagation pass
				// We terminate if regular termination only
				istermbuf[npass] = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0;
				if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) == 0 || (31 - CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_NON_BYPASS_MS_BP - skipbp <= curbp))
				{
					// No bypass coding
					totdist += sigProgPass(srcblk, mq, istermbuf[npass], curbp, state, fs, zc_lut, symbuf, ctxtbuf, ratebuf, npass, ltpidx, options) * msew;
				}
				else
				{
					// Bypass ("raw") coding
					bout.PredTerm = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_PRED_TERM) != 0;
					totdist += rawSigProgPass(srcblk, bout, istermbuf[npass], curbp, state, fs, ratebuf, npass, ltpidx, options) * msew;
				}
				distbuf[npass] = totdist;
				if (istermbuf[npass])
					ltpidx = npass;
				npass++;
				
				// Do the magnitude refinement pass
				// We terminate if regular termination or bypass ("raw") coding
				istermbuf[npass] = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0 || ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && (31 - CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_NON_BYPASS_MS_BP - skipbp > curbp));
				if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) == 0 || (31 - CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_NON_BYPASS_MS_BP - skipbp <= curbp))
				{
					// No bypass coding
					totdist += magRefPass(srcblk, mq, istermbuf[npass], curbp, state, fm, symbuf, ctxtbuf, ratebuf, npass, ltpidx, options) * msew;
				}
				else
				{
					// Bypass ("raw") coding
					bout.PredTerm = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_PRED_TERM) != 0;
					totdist += rawMagRefPass(srcblk, bout, istermbuf[npass], curbp, state, fm, ratebuf, npass, ltpidx, options) * msew;
				}
				distbuf[npass] = totdist;
				if (istermbuf[npass])
					ltpidx = npass;
				npass++;
				
				// Do the clenup pass
				// We terminate if regular termination, last bit-plane, or next
				// bit-plane is "raw".
				istermbuf[npass] = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS) != 0 || curbp == lmb || ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && (31 - CSJ2K.j2k.entropy.StdEntropyCoderOptions.NUM_NON_BYPASS_MS_BP - skipbp) >= curbp);
				totdist += cleanuppass(srcblk, mq, istermbuf[npass], curbp, state, fs, zc_lut, symbuf, ctxtbuf, ratebuf, npass, ltpidx, options) * msew;
				distbuf[npass] = totdist;
				
				if (istermbuf[npass])
					ltpidx = npass;
				npass++;
				
				// Goto next bit-plane
				msew *= 0.25;
				curbp--;
			}
			
			// Copy compressed data and rate-distortion statistics to output
			ccb.data = new byte[out_Renamed.size()];
			out_Renamed.toByteArray(0, out_Renamed.size(), ccb.data, 0);
			checkEndOfPassFF(ccb.data, ratebuf, istermbuf, npass);
			ccb.selectConvexHull(ratebuf, distbuf, (options & (CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS | CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_TERM_PASS)) != 0?istermbuf:null, npass, rev);
			
			// Reset MQ coder and bit output for next code-block
			mq.reset();
			if (bout != null)
				bout.reset();
		}
Ejemplo n.º 2
0
		/// <summary> Returns the next coded code-block in the current tile for the specified
		/// component, as a copy (see below). The order in which code-blocks are
		/// returned is not specified. However each code-block is returned only
		/// once and all code-blocks will be returned if the method is called 'N'
		/// times, where 'N' is the number of code-blocks in the tile. After all
		/// the code-blocks have been returned for the current tile calls to this
		/// method will return 'null'.
		/// 
		/// <p>When changing the current tile (through 'setTile()' or 'nextTile()')
		/// this method will always return the first code-block, as if this method
		/// was never called before for the new current tile.</p>
		/// 
		/// <p>The data returned by this method is always a copy of the internal
		/// data of this object, if any, and it can be modified "in place" without
		/// any problems after being returned.</p>
		/// 
		/// </summary>
		/// <param name="c">The component for which to return the next code-block.
		/// 
		/// </param>
		/// <param name="ccb">If non-null this object might be used in returning the coded
		/// code-block in this or any subsequent call to this method. If null a new
		/// one is created and returned. If the 'data' array of 'cbb' is not null
		/// it may be reused to return the compressed data.
		/// 
		/// </param>
		/// <returns> The next coded code-block in the current tile for component
		/// 'n', or null if all code-blocks for the current tile have been
		/// returned.
		/// 
		/// </returns>
		/// <seealso cref="CBlkRateDistStats">
		/// 
		/// </seealso>
		public override CBlkRateDistStats getNextCodeBlock(int c, CBlkRateDistStats ccb)
		{
#if DO_TIMING
			long stime = 0L; // Start time for timed sections
#endif
			// Use single threaded implementation
			// Get code-block data from source
			srcblkT[0] = src.getNextInternCodeBlock(c, srcblkT[0]);
				
#if DO_TIMING
			stime = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
#endif

			if (srcblkT[0] == null)
			{
				// We got all code-blocks
				return null;
			}
			// Initialize thread local variables
			if ((opts[tIdx][c] & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && boutT[0] == null)
			{
				boutT[0] = new BitToByteOutput(outT[0]);
			}
			// Initialize output code-block
			if (ccb == null)
			{
				ccb = new CBlkRateDistStats();
			}
			// Compress code-block
			compressCodeBlock(c, ccb, srcblkT[0], mqT[0], boutT[0], outT[0], stateT[0], distbufT[0], ratebufT[0], istermbufT[0], symbufT[0], ctxtbufT[0], opts[tIdx][c], isReversible(tIdx, c), lenCalc[tIdx][c], tType[tIdx][c]);
				
#if DO_TIMING
			time[c] += (System.DateTime.Now.Ticks - 621355968000000000) / 10000 - stime;
#endif

			// Return result
			return ccb;
		}
Ejemplo n.º 3
0
		/// <summary> Performs the significance propagation pass on the specified data and
		/// bit-plane, without using the arithmetic coder. It codes all
		/// insignificant samples which have, at least, one of its immediate eight
		/// neighbors already significant, using the ZC and SC primitives as
		/// needed. It toggles the "visited" state bit to 1 for all those samples.
		/// 
		/// <p>In this method, the arithmetic coder is bypassed, and raw bits are
		/// directly written in the bit stream (useful when distribution are close
		/// to uniform, for intance, at high bit-rates and at lossless
		/// compression).</p>
		/// 
		/// </summary>
		/// <param name="srcblk">The code-block data to code
		/// 
		/// </param>
		/// <param name="bout">The bit based output
		/// 
		/// </param>
		/// <param name="doterm">If true the bit based output is byte aligned after the
		/// end of the pass.
		/// 
		/// </param>
		/// <param name="bp">The bit-plane to code
		/// 
		/// </param>
		/// <param name="state">The state information for the code-block
		/// 
		/// </param>
		/// <param name="fs">The distortion estimation lookup table for SC
		/// 
		/// </param>
		/// <param name="ratebuf">The buffer where to store the rate (i.e. coded lenth) at 
		/// the end of this coding pass.
		/// 
		/// </param>
		/// <param name="pidx">The coding pass index. Is the index in the 'ratebuf' array
		/// where to store the coded length after this coding pass.
		/// 
		/// </param>
		/// <param name="ltpidx">The index of the last pass that was terminated, or
		/// negative if none.
		/// 
		/// </param>
		/// <param name="options">The bitmask of entropy coding options to apply to the
		/// code-block
		/// 
		/// </param>
		/// <returns> The decrease in distortion for this pass, in the fixed-point
		/// normalized representation of the 'FS_LOSSY' and 'FS_LOSSLESS' tables.
		/// 
		/// </returns>
		static private int rawSigProgPass(CBlkWTData srcblk, BitToByteOutput bout, bool doterm, int bp, int[] state, int[] fs, int[] ratebuf, int pidx, int ltpidx, int options)
		{
			int j, sj; // The state index for line and stripe
			int k, sk; // The data index for line and stripe
			int dscanw; // The data scan-width
			int sscanw; // The state scan-width
			int jstep; // Stripe to stripe step for 'sj'
			int kstep; // Stripe to stripe step for 'sk'
			int stopsk; // The loop limit on the variable sk
			int csj; // Local copy (i.e. cached) of 'state[j]'
			int mask; // The mask for the current bit-plane
			int nsym = 0; // Number of symbol
			int sym; // The symbol to code
			int[] data; // The data buffer
			int dist; // The distortion reduction for this pass
			int shift; // Shift amount for distortion
			int upshift; // Shift left amount for distortion
			int downshift; // Shift right amount for distortion
			int normval; // The normalized sample magnitude value
			int s; // The stripe index
			bool causal; // Flag to indicate if stripe-causal context
			// formation is to be used
			int nstripes; // The number of stripes in the code-block
			int sheight; // Height of the current stripe
			int off_ul, off_ur, off_dr, off_dl; // offsets
			
			// Initialize local variables
			dscanw = srcblk.scanw;
			sscanw = srcblk.w + 2;
			jstep = sscanw * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT / 2 - srcblk.w;
			kstep = dscanw * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT - srcblk.w;
			mask = 1 << bp;
			data = (int[]) srcblk.Data;
			nstripes = (srcblk.h + CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT - 1) / CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT;
			dist = 0;
			// We use the MSE_LKP_BITS-1 bits below the bit just coded for
			// distortion estimation.
			shift = bp - (MSE_LKP_BITS - 1);
			upshift = (shift >= 0)?0:- shift;
			downshift = (shift <= 0)?0:shift;
			causal = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_VERT_STR_CAUSAL) != 0;
			
			// Pre-calculate offsets in 'state' for neighbors
			off_ul = - sscanw - 1; // up-left
			off_ur = - sscanw + 1; // up-right
			off_dr = sscanw + 1; // down-right
			off_dl = sscanw - 1; // down-left
			
			// Code stripe by stripe
			sk = srcblk.offset;
			sj = sscanw + 1;
			for (s = nstripes - 1; s >= 0; s--, sk += kstep, sj += jstep)
			{
				sheight = (s != 0)?CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT:srcblk.h - (nstripes - 1) * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT;
				stopsk = sk + srcblk.w;
				// Scan by set of 1 stripe column at a time
				for (; sk < stopsk; sk++, sj++)
				{
					// Do half top of column
					j = sj;
					csj = state[j];
					// If any of the two samples is not significant and has a
					// non-zero context (i.e. some neighbor is significant) we can 
					// not skip them
					if ((((~ csj) & (csj << 2)) & SIG_MASK_R1R2) != 0)
					{
						k = sk;
						// Scan first row
						if ((csj & (STATE_SIG_R1 | STATE_NZ_CTXT_R1)) == STATE_NZ_CTXT_R1)
						{
							// Apply zero coding
							sym = SupportClass.URShift((data[k] & mask), bp);
							bout.writeBit(sym);
							nsym++;
							if (sym != 0)
							{
								// Became significant
								// Apply sign coding
								sym = SupportClass.URShift(data[k], 31);
								bout.writeBit(sym);
								nsym++;
								// Update state information (significant bit,
								// visited bit, neighbor significant bit of
								// neighbors, non zero context of neighbors, sign
								// of neighbors)
								if (!causal)
								{
									// If in causal mode do not change contexts of 
									// previous stripe.
									state[j + off_ul] |= STATE_NZ_CTXT_R2 | STATE_D_DR_R2;
									state[j + off_ur] |= STATE_NZ_CTXT_R2 | STATE_D_DL_R2;
								}
								// Update sign state information of neighbors
								if (sym != 0)
								{
									csj |= STATE_SIG_R1 | STATE_VISITED_R1 | STATE_NZ_CTXT_R2 | STATE_V_U_R2 | STATE_V_U_SIGN_R2;
									if (!causal)
									{
										// If in causal mode do not change
										// contexts of previous stripe.
										state[j - sscanw] |= STATE_NZ_CTXT_R2 | STATE_V_D_R2 | STATE_V_D_SIGN_R2;
									}
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_L_R1 | STATE_H_L_SIGN_R1 | STATE_D_UL_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_R_R1 | STATE_H_R_SIGN_R1 | STATE_D_UR_R2;
								}
								else
								{
									csj |= STATE_SIG_R1 | STATE_VISITED_R1 | STATE_NZ_CTXT_R2 | STATE_V_U_R2;
									if (!causal)
									{
										// If in causal mode do not change
										// contexts of previous stripe.
										state[j - sscanw] |= STATE_NZ_CTXT_R2 | STATE_V_D_R2;
									}
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_L_R1 | STATE_D_UL_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_R_R1 | STATE_D_UR_R2;
								}
								// Update distortion
								normval = (data[k] >> downshift) << upshift;
								dist += fs[normval & ((1 << (MSE_LKP_BITS - 1)) - 1)];
							}
							else
							{
								csj |= STATE_VISITED_R1;
							}
						}
						if (sheight < 2)
						{
							state[j] = csj;
							continue;
						}
						// Scan second row
						if ((csj & (STATE_SIG_R2 | STATE_NZ_CTXT_R2)) == STATE_NZ_CTXT_R2)
						{
							k += dscanw;
							// Apply zero coding
							sym = SupportClass.URShift((data[k] & mask), bp);
							bout.writeBit(sym);
							nsym++;
							if (sym != 0)
							{
								// Became significant
								// Apply sign coding
								sym = SupportClass.URShift(data[k], 31);
								bout.writeBit(sym);
								nsym++;
								// Update state information (significant bit,
								// visited bit, neighbor significant bit of
								// neighbors, non zero context of neighbors, sign
								// of neighbors)
								state[j + off_dl] |= STATE_NZ_CTXT_R1 | STATE_D_UR_R1;
								state[j + off_dr] |= STATE_NZ_CTXT_R1 | STATE_D_UL_R1;
								// Update sign state information of neighbors
								if (sym != 0)
								{
									csj |= STATE_SIG_R2 | STATE_VISITED_R2 | STATE_NZ_CTXT_R1 | STATE_V_D_R1 | STATE_V_D_SIGN_R1;
									state[j + sscanw] |= STATE_NZ_CTXT_R1 | STATE_V_U_R1 | STATE_V_U_SIGN_R1;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DL_R1 | STATE_H_L_R2 | STATE_H_L_SIGN_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DR_R1 | STATE_H_R_R2 | STATE_H_R_SIGN_R2;
								}
								else
								{
									csj |= STATE_SIG_R2 | STATE_VISITED_R2 | STATE_NZ_CTXT_R1 | STATE_V_D_R1;
									state[j + sscanw] |= STATE_NZ_CTXT_R1 | STATE_V_U_R1;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DL_R1 | STATE_H_L_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DR_R1 | STATE_H_R_R2;
								}
								// Update distortion
								normval = (data[k] >> downshift) << upshift;
								dist += fs[normval & ((1 << (MSE_LKP_BITS - 1)) - 1)];
							}
							else
							{
								csj |= STATE_VISITED_R2;
							}
						}
						state[j] = csj;
					}
					// Do half bottom of column
					if (sheight < 3)
						continue;
					j += sscanw;
					csj = state[j];
					// If any of the two samples is not significant and has a
					// non-zero context (i.e. some neighbor is significant) we can 
					// not skip them
					if ((((~ csj) & (csj << 2)) & SIG_MASK_R1R2) != 0)
					{
						k = sk + (dscanw << 1);
						// Scan first row
						if ((csj & (STATE_SIG_R1 | STATE_NZ_CTXT_R1)) == STATE_NZ_CTXT_R1)
						{
							sym = SupportClass.URShift((data[k] & mask), bp);
							bout.writeBit(sym);
							nsym++;
							if (sym != 0)
							{
								// Became significant
								// Apply sign coding
								sym = SupportClass.URShift(data[k], 31);
								bout.writeBit(sym);
								nsym++;
								// Update state information (significant bit,
								// visited bit, neighbor significant bit of
								// neighbors, non zero context of neighbors, sign
								// of neighbors)
								state[j + off_ul] |= STATE_NZ_CTXT_R2 | STATE_D_DR_R2;
								state[j + off_ur] |= STATE_NZ_CTXT_R2 | STATE_D_DL_R2;
								// Update sign state information of neighbors
								if (sym != 0)
								{
									csj |= STATE_SIG_R1 | STATE_VISITED_R1 | STATE_NZ_CTXT_R2 | STATE_V_U_R2 | STATE_V_U_SIGN_R2;
									state[j - sscanw] |= STATE_NZ_CTXT_R2 | STATE_V_D_R2 | STATE_V_D_SIGN_R2;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_L_R1 | STATE_H_L_SIGN_R1 | STATE_D_UL_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_R_R1 | STATE_H_R_SIGN_R1 | STATE_D_UR_R2;
								}
								else
								{
									csj |= STATE_SIG_R1 | STATE_VISITED_R1 | STATE_NZ_CTXT_R2 | STATE_V_U_R2;
									state[j - sscanw] |= STATE_NZ_CTXT_R2 | STATE_V_D_R2;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_L_R1 | STATE_D_UL_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_R_R1 | STATE_D_UR_R2;
								}
								// Update distortion
								normval = (data[k] >> downshift) << upshift;
								dist += fs[normval & ((1 << (MSE_LKP_BITS - 1)) - 1)];
							}
							else
							{
								csj |= STATE_VISITED_R1;
							}
						}
						if (sheight < 4)
						{
							state[j] = csj;
							continue;
						}
						if ((csj & (STATE_SIG_R2 | STATE_NZ_CTXT_R2)) == STATE_NZ_CTXT_R2)
						{
							k += dscanw;
							// Apply zero coding
							sym = SupportClass.URShift((data[k] & mask), bp);
							bout.writeBit(sym);
							nsym++;
							if (sym != 0)
							{
								// Became significant
								// Apply sign coding
								sym = SupportClass.URShift(data[k], 31);
								bout.writeBit(sym);
								nsym++;
								// Update state information (significant bit,
								// visited bit, neighbor significant bit of
								// neighbors, non zero context of neighbors, sign
								// of neighbors)
								state[j + off_dl] |= STATE_NZ_CTXT_R1 | STATE_D_UR_R1;
								state[j + off_dr] |= STATE_NZ_CTXT_R1 | STATE_D_UL_R1;
								// Update sign state information of neighbors
								if (sym != 0)
								{
									csj |= STATE_SIG_R2 | STATE_VISITED_R2 | STATE_NZ_CTXT_R1 | STATE_V_D_R1 | STATE_V_D_SIGN_R1;
									state[j + sscanw] |= STATE_NZ_CTXT_R1 | STATE_V_U_R1 | STATE_V_U_SIGN_R1;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DL_R1 | STATE_H_L_R2 | STATE_H_L_SIGN_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DR_R1 | STATE_H_R_R2 | STATE_H_R_SIGN_R2;
								}
								else
								{
									csj |= STATE_SIG_R2 | STATE_VISITED_R2 | STATE_NZ_CTXT_R1 | STATE_V_D_R1;
									state[j + sscanw] |= STATE_NZ_CTXT_R1 | STATE_V_U_R1;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DL_R1 | STATE_H_L_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DR_R1 | STATE_H_R_R2;
								}
								// Update distortion
								normval = (data[k] >> downshift) << upshift;
								dist += fs[normval & ((1 << (MSE_LKP_BITS - 1)) - 1)];
							}
							else
							{
								csj |= STATE_VISITED_R2;
							}
						}
						state[j] = csj;
					}
				}
			}
			
			// Get length and terminate if needed
			if (doterm)
			{
				ratebuf[pidx] = bout.terminate();
			}
			else
			{
				ratebuf[pidx] = bout.length();
			}
			// Add length of previous segments, if any
			if (ltpidx >= 0)
			{
				ratebuf[pidx] += ratebuf[ltpidx];
			}
			
			// Return the reduction in distortion
			return dist;
		}
Ejemplo n.º 4
0
		/// <summary> Performs the magnitude refinement pass on the specified data and
		/// bit-plane, without using the arithmetic coder. It codes the samples
		/// which are significant and which do not have the "visited" state bit
		/// turned on, using the MR primitive. The "visited" state bit is not
		/// mofified for any samples.
		/// 
		/// <p>In this method, the arithmetic coder is bypassed, and raw bits are
		/// directly written in the bit stream (useful when distribution are close
		/// to uniform, for intance, at high bit-rates and at lossless
		/// compression). The 'STATE_PREV_MR_R1' and 'STATE_PREV_MR_R2' bits are
		/// not set because they are used only when the arithmetic coder is not
		/// bypassed.</p>
		/// 
		/// </summary>
		/// <param name="srcblk">The code-block data to code
		/// 
		/// </param>
		/// <param name="bout">The bit based output
		/// 
		/// </param>
		/// <param name="doterm">If true the bit based output is byte aligned after the
		/// end of the pass.
		/// 
		/// </param>
		/// <param name="bp">The bit-plane to code
		/// 
		/// </param>
		/// <param name="state">The state information for the code-block
		/// 
		/// </param>
		/// <param name="fm">The distortion estimation lookup table for MR
		/// 
		/// </param>
		/// <param name="ratebuf">The buffer where to store the rate (i.e. coded lenth) at 
		/// the end of this coding pass.
		/// 
		/// </param>
		/// <param name="pidx">The coding pass index. Is the index in the 'ratebuf' array
		/// where to store the coded length after this coding pass.
		/// 
		/// </param>
		/// <param name="ltpidx">The index of the last pass that was terminated, or
		/// negative if none.
		/// 
		/// </param>
		/// <param name="options">The bitmask of entropy coding options to apply to the
		/// code-block
		/// 
		/// </param>
		/// <returns> The decrease in distortion for this pass, in the fixed-point
		/// normalized representation of the 'FS_LOSSY' and 'FS_LOSSLESS' tables.
		/// 
		/// </returns>
		static private int rawMagRefPass(CBlkWTData srcblk, BitToByteOutput bout, bool doterm, int bp, int[] state, int[] fm, int[] ratebuf, int pidx, int ltpidx, int options)
		{
			int j, sj; // The state index for line and stripe
			int k, sk; // The data index for line and stripe
			int dscanw; // The data scan-width
			int sscanw; // The state scan-width
			int jstep; // Stripe to stripe step for 'sj'
			int kstep; // Stripe to stripe step for 'sk'
			int stopsk; // The loop limit on the variable sk
			int csj; // Local copy (i.e. cached) of 'state[j]'
			int mask; // The mask for the current bit-plane
			int[] data; // The data buffer
			int dist; // The distortion reduction for this pass
			int shift; // Shift amount for distortion
			int upshift; // Shift left amount for distortion
			int downshift; // Shift right amount for distortion
			int normval; // The normalized sample magnitude value
			int s; // The stripe index
			int nstripes; // The number of stripes in the code-block
			int sheight; // Height of the current stripe
			int nsym = 0;
			
			// Initialize local variables
			dscanw = srcblk.scanw;
			sscanw = srcblk.w + 2;
			jstep = sscanw * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT / 2 - srcblk.w;
			kstep = dscanw * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT - srcblk.w;
			mask = 1 << bp;
			data = (int[]) srcblk.Data;
			nstripes = (srcblk.h + CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT - 1) / CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT;
			dist = 0;
			// We use the bit just coded plus MSE_LKP_BITS-1 bits below the bit
			// just coded for distortion estimation.
			shift = bp - (MSE_LKP_BITS - 1);
			upshift = (shift >= 0)?0:- shift;
			downshift = (shift <= 0)?0:shift;
			
			// Code stripe by stripe
			sk = srcblk.offset;
			sj = sscanw + 1;
			for (s = nstripes - 1; s >= 0; s--, sk += kstep, sj += jstep)
			{
				sheight = (s != 0)?CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT:srcblk.h - (nstripes - 1) * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT;
				stopsk = sk + srcblk.w;
				// Scan by set of 1 stripe column at a time
				for (; sk < stopsk; sk++, sj++)
				{
					// Do half top of column
					j = sj;
					csj = state[j];
					// If any of the two samples is significant and not yet
					// visited in the current bit-plane we can not skip them
					if ((((SupportClass.URShift(csj, 1)) & (~ csj)) & VSTD_MASK_R1R2) != 0)
					{
						k = sk;
						// Scan first row
						if ((csj & (STATE_SIG_R1 | STATE_VISITED_R1)) == STATE_SIG_R1)
						{
							// Code bit "raw"
							bout.writeBit(SupportClass.URShift((data[k] & mask), bp));
							nsym++;
							// No need to set STATE_PREV_MR_R1 since all magnitude 
							// refinement passes to follow are "raw"
							// Update distortion
							normval = (data[k] >> downshift) << upshift;
							dist += fm[normval & ((1 << MSE_LKP_BITS) - 1)];
						}
						if (sheight < 2)
							continue;
						// Scan second row
						if ((csj & (STATE_SIG_R2 | STATE_VISITED_R2)) == STATE_SIG_R2)
						{
							k += dscanw;
							// Code bit "raw"
							bout.writeBit(SupportClass.URShift((data[k] & mask), bp));
							nsym++;
							// No need to set STATE_PREV_MR_R2 since all magnitude 
							// refinement passes to follow are "raw"
							// Update distortion
							normval = (data[k] >> downshift) << upshift;
							dist += fm[normval & ((1 << MSE_LKP_BITS) - 1)];
						}
					}
					// Do half bottom of column
					if (sheight < 3)
						continue;
					j += sscanw;
					csj = state[j];
					// If any of the two samples is significant and not yet
					// visited in the current bit-plane we can not skip them
					if ((((SupportClass.URShift(csj, 1)) & (~ csj)) & VSTD_MASK_R1R2) != 0)
					{
						k = sk + (dscanw << 1);
						// Scan first row
						if ((csj & (STATE_SIG_R1 | STATE_VISITED_R1)) == STATE_SIG_R1)
						{
							// Code bit "raw"
							bout.writeBit(SupportClass.URShift((data[k] & mask), bp));
							nsym++;
							// No need to set STATE_PREV_MR_R1 since all magnitude 
							// refinement passes to follow are "raw"
							// Update distortion
							normval = (data[k] >> downshift) << upshift;
							dist += fm[normval & ((1 << MSE_LKP_BITS) - 1)];
						}
						if (sheight < 4)
							continue;
						// Scan second row
						if ((state[j] & (STATE_SIG_R2 | STATE_VISITED_R2)) == STATE_SIG_R2)
						{
							k += dscanw;
							// Code bit "raw"
							bout.writeBit(SupportClass.URShift((data[k] & mask), bp));
							nsym++;
							// No need to set STATE_PREV_MR_R2 since all magnitude 
							// refinement passes to follow are "raw"
							// Update distortion
							normval = (data[k] >> downshift) << upshift;
							dist += fm[normval & ((1 << MSE_LKP_BITS) - 1)];
						}
					}
				}
			}
			
			// Get length and terminate if needed
			if (doterm)
			{
				ratebuf[pidx] = bout.terminate();
			}
			else
			{
				ratebuf[pidx] = bout.length();
			}
			
			// Add length of previous segments, if any
			if (ltpidx >= 0)
			{
				ratebuf[pidx] += ratebuf[ltpidx];
			}
			
			// Return the reduction in distortion
			return dist;
		}
Ejemplo n.º 5
0
		/// <summary> Returns the next coded code-block in the current tile for the specified
		/// component, as a copy (see below). The order in which code-blocks are
		/// returned is not specified. However each code-block is returned only
		/// once and all code-blocks will be returned if the method is called 'N'
		/// times, where 'N' is the number of code-blocks in the tile. After all
		/// the code-blocks have been returned for the current tile calls to this
		/// method will return 'null'.
		/// 
		/// <p>When changing the current tile (through 'setTile()' or 'nextTile()')
		/// this method will always return the first code-block, as if this method
		/// was never called before for the new current tile.</p>
		/// 
		/// <p>The data returned by this method is always a copy of the internal
		/// data of this object, if any, and it can be modified "in place" without
		/// any problems after being returned.</p>
		/// 
		/// </summary>
		/// <param name="c">The component for which to return the next code-block.
		/// 
		/// </param>
		/// <param name="ccb">If non-null this object might be used in returning the coded
		/// code-block in this or any subsequent call to this method. If null a new
		/// one is created and returned. If the 'data' array of 'cbb' is not null
		/// it may be reused to return the compressed data.
		/// 
		/// </param>
		/// <returns> The next coded code-block in the current tile for component
		/// 'n', or null if all code-blocks for the current tile have been
		/// returned.
		/// 
		/// </returns>
		/// <seealso cref="CBlkRateDistStats">
		/// 
		/// </seealso>
		public override CBlkRateDistStats getNextCodeBlock(int c, CBlkRateDistStats ccb)
		{
#if DO_TIMING
			long stime = 0L; // Start time for timed sections
#endif
			if (tPool == null)
			{
				// Use single threaded implementation
				// Get code-block data from source
				srcblkT[0] = src.getNextInternCodeBlock(c, srcblkT[0]);
				
#if DO_TIMING
			    stime = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
#endif

				if (srcblkT[0] == null)
				{
					// We got all code-blocks
					return null;
				}
				// Initialize thread local variables
				if ((opts[tIdx][c] & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && boutT[0] == null)
				{
					boutT[0] = new BitToByteOutput(outT[0]);
				}
				// Initialize output code-block
				if (ccb == null)
				{
					ccb = new CBlkRateDistStats();
				}
				// Compress code-block
				compressCodeBlock(c, ccb, srcblkT[0], mqT[0], boutT[0], outT[0], stateT[0], distbufT[0], ratebufT[0], istermbufT[0], symbufT[0], ctxtbufT[0], opts[tIdx][c], isReversible(tIdx, c), lenCalc[tIdx][c], tType[tIdx][c]);
				
#if DO_TIMING
				time[c] += (System.DateTime.Now.Ticks - 621355968000000000) / 10000 - stime;
#endif

				// Return result
				return ccb;
			}
			else
			{
				// Use multiple threaded implementation
				int cIdx; // Compressor idx
				Compressor compr; // Compressor
				
#if DO_TIMING
				stime = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
#endif
				// Give data to all free compressors, using the current component
				while (!finishedTileComponent[c] && !(idleComps.Count == 0))
				{
					// Get an idle compressor
					compr = (Compressor) SupportClass.StackSupport.Pop(idleComps);
					cIdx = compr.Idx;
					// Get data for the compressor and wake it up
#if DO_TIMING
					time[c] += (System.DateTime.Now.Ticks - 621355968000000000) / 10000 - stime;
#endif
					srcblkT[cIdx] = src.getNextInternCodeBlock(c, srcblkT[cIdx]);
#if DO_TIMING
					stime = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
#endif
					if (srcblkT[cIdx] != null)
					{
						// Initialize thread local variables
						if ((opts[tIdx][c] & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_BYPASS) != 0 && boutT[cIdx] == null)
						{
							boutT[cIdx] = new BitToByteOutput(outT[cIdx]);
						}
						// Initialize output code-block and compressor thread
						if (ccb == null)
							ccb = new CBlkRateDistStats();
						compr.ccb = ccb;
						compr.c = c;
						compr.options = opts[tIdx][c];
						compr.rev = isReversible(tIdx, c);
						compr.lcType = lenCalc[tIdx][c];
						compr.tType = tType[tIdx][c];
						nBusyComps[c]++;
						ccb = null;
						// Send compressor to execution in thread pool
						tPool.runTarget(compr, completedComps[c]);
					}
					else
					{
						// We finished with all the code-blocks in the current
						// tile component
						idleComps.Add(compr);
						finishedTileComponent[c] = true;
					}
				}
				// If there are threads for this component which result has not
				// been returned yet, get it
				if (nBusyComps[c] > 0)
				{
					lock (completedComps[c])
					{
						// If no compressor is done, wait until one is
						if ((completedComps[c].Count == 0))
						{
							try
							{
#if DO_TIMING
								time[c] += (System.DateTime.Now.Ticks - 621355968000000000) / 10000 - stime;
#endif
								System.Threading.Monitor.Wait(completedComps[c]);
#if DO_TIMING
								stime = (System.DateTime.Now.Ticks - 621355968000000000) / 10000;
#endif
							}
							catch (System.Threading.ThreadInterruptedException)
							{
							}
						}
						// Remove the thread from the completed queue and put it
						// on the idle queue
						compr = (Compressor) SupportClass.StackSupport.Pop(completedComps[c]);
						cIdx = compr.Idx;
						nBusyComps[c]--;
						idleComps.Add(compr);
						// Check targets error condition
						tPool.checkTargetErrors();
						// Get the result of compression and return that.
#if DO_TIMING
						time[c] += (System.DateTime.Now.Ticks - 621355968000000000) / 10000 - stime;
#endif
						return compr.ccb;
					}
				}
				else
				{
					// Check targets error condition
					tPool.checkTargetErrors();
					// Printing timing info if necessary
#if DO_TIMING
					time[c] += (System.DateTime.Now.Ticks - 621355968000000000) / 10000 - stime;
#endif
					// Nothing is running => no more code-blocks
					return null;
				}
			}
		}