Ejemplo n.º 1
0
 internal void Register(GpuMatrix matrix)
 {
     if (_allocationLayer.Any())
     {
         var layer = _allocationLayer.Peek();
         if (layer != null)
         {
             layer.Add(matrix);
         }
     }
 }
Ejemplo n.º 2
0
 public IVector FindDistances(IReadOnlyList <IVector> data, DistanceMetric distance)
 {
     Debug.Assert(IsValid && data.All(v => v.IsValid));
     if (distance == DistanceMetric.Cosine)
     {
         var norm     = DotProduct(this);
         var dataNorm = data.Select(d => d.DotProduct(d)).ToList();
         var ret      = new float[data.Count];
         for (var i = 0; i < data.Count; i++)
         {
             ret[i] = Convert.ToSingle(1d - DotProduct(data[i]) / Math.Sqrt(norm * dataNorm[i]));
         }
         return(new GpuVector(_cuda, data.Count, i => ret[i]));
     }
     else if (distance == DistanceMetric.Euclidean)
     {
         var ptrArray = data.Cast <GpuVector>().Select(d => d._data.DevicePointer).ToArray();
         var ret      = _cuda.MultiEuclideanDistance(_data, ptrArray, _size);
         using (var matrix = new GpuMatrix(_cuda, _size, data.Count, ret)) {
             using (var temp = matrix.ColumnSums())
                 return(temp.Sqrt());
         }
     }
     else if (distance == DistanceMetric.Manhattan)
     {
         var ptrArray = data.Cast <GpuVector>().Select(d => d._data.DevicePointer).ToArray();
         var ret      = _cuda.MultiManhattanDistance(_data, ptrArray, _size);
         using (var matrix = new GpuMatrix(_cuda, _size, data.Count, ret)) {
             return(matrix.ColumnSums());
         }
     }
     else
     {
         var distanceFunc = _GetDistanceFunc(distance);
         var ret          = new float[data.Count];
         for (var i = 0; i < data.Count; i++)
         {
             ret[i] = distanceFunc(data[i]);
         }
         return(new GpuVector(_cuda, data.Count, i => ret[i]));
     }
 }
Ejemplo n.º 3
0
        public IMatrix SoftmaxActivation()
        {
            Debug.Assert(IsValid);
            var rowOutput = new List <GpuVector>();

            for (var i = 0; i < _rows; i++)
            {
                using (var row = Row(i))
                    rowOutput.Add(row.Softmax() as GpuVector);
            }
            var ret = _cuda.Allocate(_rows * _columns);

            for (var i = 0; i < _rows; i++)
            {
                using (var row = rowOutput[i])
                    ret.DeviceVariable.CopyToDevice(row.CudaDeviceVariable, 0, _columns * i * sizeof(float), _columns * sizeof(float));
            }
            using (var temp = new GpuMatrix(_cuda, _columns, _rows, ret))
                return(temp.Transpose());
        }
Ejemplo n.º 4
0
        public IMatrix SoftmaxActivation()
        {
            Debug.Assert(IsValid);
            var rowOutput = new List <GpuVector>();

            for (var i = 0; i < _rows; i++)
            {
                using (var row = Row(i))
                    rowOutput.Add(row.Softmax() as GpuVector);
            }
            var ret = new CudaDeviceVariable <float>(_rows * _columns);

            for (var i = 0; i < _rows; i++)
            {
                using (var row = rowOutput[i]) {
                    ret.CopyToDevice(row.CudaDeviceVariable, 0, _columns * i * sizeof(float), _columns * sizeof(float));
                    //CudaBlasNativeMethods.cublasScopy_v2(_cuda.Blas.CublasHandle, _columns * sizeof(float), row.CudaDeviceVariable.DevicePointer, sizeof(float), ret.DevicePointer, _rows * sizeof(float));
                }
            }
            //return new GpuMatrix(_cuda, _rows, _columns, ret);
            using (var temp = new GpuMatrix(_cuda, _columns, _rows, ret))
                return(temp.Transpose());
        }
Ejemplo n.º 5
0
 public void Add(GpuMatrix matrix)
 {
     _matrix.Add(matrix);
 }