Input for Distance. You have to option to use the shape radii in the computation.
Ejemplo n.º 1
0
		public override void Step(Settings settings)
		{
			base.Step(settings);

			DistanceInput input = new DistanceInput();
			input.TransformA = _transformA;
			input.TransformB = _transformB;
			input.UseRadii = true;
			SimplexCache cache = new SimplexCache();
			cache.Count = 0;
			DistanceOutput output;
			Collision.Distance(out output, ref cache, ref input, _polygonA, _polygonB);

			StringBuilder strBld = new StringBuilder();
			strBld.AppendFormat("distance = {0}", new object[] { output.Distance });
			OpenGLDebugDraw.DrawString(5, _textLine, strBld.ToString());
			_textLine += 15;

			strBld = new StringBuilder();
			strBld.AppendFormat("iterations = {0}", new object[] { output.Iterations });
			OpenGLDebugDraw.DrawString(5, _textLine, strBld.ToString());
			_textLine += 15;

			{
				Color color = new Color(0.9f, 0.9f, 0.9f);
				int i;
				for (i = 0; i < _polygonA.VertexCount; ++i)
				{
					_dv[i] = Math.Mul(_transformA, _polygonA.Vertices[i]);
				}
				_debugDraw.DrawPolygon(_dv, _polygonA.VertexCount, color);

				for (i = 0; i < _polygonB.VertexCount; ++i)
				{
					_dv[i] = Math.Mul(_transformB, _polygonB.Vertices[i]);
				}
				_debugDraw.DrawPolygon(_dv, _polygonB.VertexCount, color);
			}

			Vec2 x1 = output.PointA;
			Vec2 x2 = output.PointB;

			OpenGLDebugDraw.DrawPoint(x1, 4.0f, new Color(1, 0, 0));
			OpenGLDebugDraw.DrawSegment(x1, x2, new Color(1, 1, 0));
			OpenGLDebugDraw.DrawPoint(x2, 4.0f, new Color(1, 0, 0));
		}
		static void Distance(out DistanceOutput output, ref SimplexCache cache, ref DistanceInput input, Shape shapeA, Shape shapeB)
		{
			output = new DistanceOutput();

			Transform transformA = input.TransformA;
			Transform transformB = input.TransformB;

			// Initialize the simplex.
			Simplex simplex = new Simplex();
#if ALLOWUNSAFE
			fixed (SimplexCache* sPtr = &cache)
			{
				simplex.ReadCache(sPtr, shapeA, transformA, shapeB, transformB);
			}
#else
			simplex.ReadCache(cache, shapeA, transformA, shapeB, transformB);
#endif

			// Get simplex vertices as an array.
#if ALLOWUNSAFE
			SimplexVertex* vertices = &simplex._v1;
#else
			SimplexVertex[] vertices = new SimplexVertex[] { simplex._v1, simplex._v2, simplex._v3 };
#endif 

			// These store the vertices of the last simplex so that we
			// can check for duplicates and prevent cycling.
#if ALLOWUNSAFE
			int* lastA = stackalloc int[4], lastB = stackalloc int[4];
#else
			int[] lastA = new int[4];
			int[] lastB = new int[4];
#endif // ALLOWUNSAFE
			int lastCount;

			// Main iteration loop.
			int iter = 0;
			const int k_maxIterationCount = 20;
			while (iter < k_maxIterationCount)
			{
				// Copy simplex so we can identify duplicates.
				lastCount = simplex._count;
				int i;
				for (i = 0; i < lastCount; ++i)
				{
					lastA[i] = vertices[i].indexA;
					lastB[i] = vertices[i].indexB;
				}

				switch (simplex._count)
				{
					case 1:
						break;

					case 2:
						simplex.Solve2();
						break;

					case 3:
						simplex.Solve3();
						break;

					default:
#if DEBUG
						Box2DXDebug.Assert(false);
#endif
						break;
				}

				// If we have 3 points, then the origin is in the corresponding triangle.
				if (simplex._count == 3)
				{
					break;
				}

				// Compute closest point.
				Vector2 p = simplex.GetClosestPoint();
				float distanceSqr = p.sqrMagnitude;

				// Ensure the search direction is numerically fit.
				if (distanceSqr < Common.Settings.FLT_EPSILON_SQUARED)
				{
					// The origin is probably contained by a line segment
					// or triangle. Thus the shapes are overlapped.

					// We can't return zero here even though there may be overlap.
					// In case the simplex is a point, segment, or triangle it is difficult
					// to determine if the origin is contained in the CSO or very close to it.
					break;
				}

				// Compute a tentative new simplex vertex using support points.
#if ALLOWUNSAFE
				SimplexVertex* vertex = vertices + simplex._count;
				vertex->indexA = shapeA.GetSupport(transformA.InverseTransformDirection(p));
				vertex->wA = transformA.TransformPoint(shapeA.GetVertex(vertex->indexA));
				//Vec2 wBLocal;
				vertex->indexB = shapeB.GetSupport(transformB.InverseTransformDirection(-p));
				vertex->wB = transformB.TransformPoint(shapeB.GetVertex(vertex->indexB));
				vertex->w = vertex->wB - vertex->wA;
#else
				SimplexVertex vertex = vertices[simplex._count - 1];
				vertex.indexA = shapeA.GetSupport(transformA.InverseTransformDirection(p));
				vertex.wA = transformA.TransformPoint(shapeA.GetVertex(vertex.indexA));
				//Vec2 wBLocal;
				vertex.indexB = shapeB.GetSupport(transformB.InverseTransformDirection(-p));
				vertex.wB = transformB.TransformPoint(shapeB.GetVertex(vertex.indexB));
				vertex.w = vertex.wB - vertex.wA;	
#endif // ALLOWUNSAFE

				// Iteration count is equated to the number of support point calls.
				++iter;

				// Check for convergence.
#if ALLOWUNSAFE
				float lowerBound = Vector2.Dot(p, vertex->w);
#else
				float lowerBound = Vector2.Dot(p, vertex.w);
#endif
				float upperBound = distanceSqr;
				const float k_relativeTolSqr = 0.01f * 0.01f;	// 1:100
				if (upperBound - lowerBound <= k_relativeTolSqr * upperBound)
				{
					// Converged!
					break;
				}

				// Check for duplicate support points.
				bool duplicate = false;
				for (i = 0; i < lastCount; ++i)
				{
#if ALLOWUNSAFE
					if (vertex->indexA == lastA[i] && vertex->indexB == lastB[i])
#else
					if (vertex.indexA == lastA[i] && vertex.indexB == lastB[i])
#endif
					{
						duplicate = true;
						break;
					}
				}

				// If we found a duplicate support point we must exit to avoid cycling.
				if (duplicate)
				{
					break;
				}

				// New vertex is ok and needed.
				++simplex._count;
			}

			
#if ALLOWUNSAFE
			fixed (DistanceOutput* doPtr = &output)
			{
				// Prepare output.
				simplex.GetWitnessPoints(&doPtr->PointA, &doPtr->PointB);
				doPtr->Distance = Vector2.Distance(doPtr->PointA, doPtr->PointB);
				doPtr->Iterations = iter;
			}

			fixed (SimplexCache* sPtr = &cache)
			{
				// Cache the simplex.
				simplex.WriteCache(sPtr);
			}
#else
			// Prepare output.
			simplex.GetWitnessPoints(out output.PointA, out output.PointB);
			output.Distance = Vector2.Distance(output.PointA, output.PointB);
			output.Iterations = iter;
			
			// Cache the simplex.
			simplex.WriteCache(cache);
#endif

			// Apply radii if requested.
			if (input.UseRadii)
			{
				float rA = shapeA._radius;
				float rB = shapeB._radius;

				if (output.Distance > rA + rB && output.Distance > Common.Settings.FLT_EPSILON)
				{
					// Shapes are still no overlapped.
					// Move the witness points to the outer surface.
					output.Distance -= rA + rB;
					Vector2 normal = output.PointB - output.PointA;
					normal.Normalize();
					output.PointA += rA * normal;
					output.PointB -= rB * normal;
				}
				else
				{
					// Shapes are overlapped when radii are considered.
					// Move the witness points to the middle.
					Vector2 p = 0.5f * (output.PointA + output.PointB);
					output.PointA = p;
					output.PointB = p;
					output.Distance = 0.0f;
				}
			}
		}
Ejemplo n.º 3
0
        static void Distance(out DistanceOutput output, ref SimplexCache cache, ref DistanceInput input, Shape shapeA, Shape shapeB)
        {
            output = new DistanceOutput();

            Transform transformA = input.TransformA;
            Transform transformB = input.TransformB;

            // Initialize the simplex.
            Simplex simplex = new Simplex();

#if ALLOWUNSAFE
            fixed(SimplexCache *sPtr = &cache)
            {
                simplex.ReadCache(sPtr, shapeA, transformA, shapeB, transformB);
            }
#else
            simplex.ReadCache(cache, shapeA, transformA, shapeB, transformB);
#endif

            // Get simplex vertices as an array.
#if ALLOWUNSAFE
            SimplexVertex *vertices = &simplex._v1;
#else
            SimplexVertex[] vertices = new SimplexVertex[] { simplex._v1, simplex._v2, simplex._v3 };
#endif

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
#if ALLOWUNSAFE
            int *lastA = stackalloc int[4], lastB = stackalloc int[4];
#else
            int[] lastA = new int[4];
            int[] lastB = new int[4];
#endif // ALLOWUNSAFE
            int lastCount;

            // Main iteration loop.
            int       iter = 0;
            const int k_maxIterationCount = 20;
            while (iter < k_maxIterationCount)
            {
                // Copy simplex so we can identify duplicates.
                lastCount = simplex._count;
                int i;
                for (i = 0; i < lastCount; ++i)
                {
                    lastA[i] = vertices[i].indexA;
                    lastB[i] = vertices[i].indexB;
                }

                switch (simplex._count)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
#if DEBUG
                    Box2DXDebug.Assert(false);
#endif
                    break;
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex._count == 3)
                {
                    break;
                }

                // Compute closest point.
                Vector2 p           = simplex.GetClosestPoint();
                float   distanceSqr = p.sqrMagnitude;

                // Ensure the search direction is numerically fit.
                if (distanceSqr < Common.Settings.FLT_EPSILON_SQUARED)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }

                // Compute a tentative new simplex vertex using support points.
#if ALLOWUNSAFE
                SimplexVertex *vertex = vertices + simplex._count;
                vertex->indexA = shapeA.GetSupport(transformA.InverseTransformDirection(p));
                vertex->wA     = transformA.TransformPoint(shapeA.GetVertex(vertex->indexA));
                //Vec2 wBLocal;
                vertex->indexB = shapeB.GetSupport(transformB.InverseTransformDirection(-p));
                vertex->wB     = transformB.TransformPoint(shapeB.GetVertex(vertex->indexB));
                vertex->w      = vertex->wB - vertex->wA;
#else
                SimplexVertex vertex = vertices[simplex._count - 1];
                vertex.indexA = shapeA.GetSupport(transformA.InverseTransformDirection(p));
                vertex.wA     = transformA.TransformPoint(shapeA.GetVertex(vertex.indexA));
                //Vec2 wBLocal;
                vertex.indexB = shapeB.GetSupport(transformB.InverseTransformDirection(-p));
                vertex.wB     = transformB.TransformPoint(shapeB.GetVertex(vertex.indexB));
                vertex.w      = vertex.wB - vertex.wA;
#endif // ALLOWUNSAFE

                // Iteration count is equated to the number of support point calls.
                ++iter;

                // Check for convergence.
#if ALLOWUNSAFE
                float lowerBound = Vector2.Dot(p, vertex->w);
#else
                float lowerBound = Vector2.Dot(p, vertex.w);
#endif
                float       upperBound       = distanceSqr;
                const float k_relativeTolSqr = 0.01f * 0.01f;                   // 1:100
                if (upperBound - lowerBound <= k_relativeTolSqr * upperBound)
                {
                    // Converged!
                    break;
                }

                // Check for duplicate support points.
                bool duplicate = false;
                for (i = 0; i < lastCount; ++i)
                {
#if ALLOWUNSAFE
                    if (vertex->indexA == lastA[i] && vertex->indexB == lastB[i])
#else
                    if (vertex.indexA == lastA[i] && vertex.indexB == lastB[i])
#endif
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex._count;
            }


#if ALLOWUNSAFE
            fixed(DistanceOutput *doPtr = &output)
            {
                // Prepare output.
                simplex.GetWitnessPoints(&doPtr->PointA, &doPtr->PointB);
                doPtr->Distance   = Vector2.Distance(doPtr->PointA, doPtr->PointB);
                doPtr->Iterations = iter;
            }

            fixed(SimplexCache *sPtr = &cache)
            {
                // Cache the simplex.
                simplex.WriteCache(sPtr);
            }
#else
            // Prepare output.
            simplex.GetWitnessPoints(out output.PointA, out output.PointB);
            output.Distance   = Vector2.Distance(output.PointA, output.PointB);
            output.Iterations = iter;

            // Cache the simplex.
            simplex.WriteCache(cache);
#endif

            // Apply radii if requested.
            if (input.UseRadii)
            {
                float rA = shapeA._radius;
                float rB = shapeB._radius;

                if (output.Distance > rA + rB && output.Distance > Common.Settings.FLT_EPSILON)
                {
                    // Shapes are still no overlapped.
                    // Move the witness points to the outer surface.
                    output.Distance -= rA + rB;
                    Vector2 normal = output.PointB - output.PointA;
                    normal.Normalize();
                    output.PointA += rA * normal;
                    output.PointB -= rB * normal;
                }
                else
                {
                    // Shapes are overlapped when radii are considered.
                    // Move the witness points to the middle.
                    Vector2 p = 0.5f * (output.PointA + output.PointB);
                    output.PointA   = p;
                    output.PointB   = p;
                    output.Distance = 0.0f;
                }
            }
        }
        /// <summary>
        /// CCD via the secant method.
        /// Compute the time when two shapes begin to touch or touch at a closer distance.
        /// TOI considers the shape radii. It attempts to have the radii overlap by the tolerance.
        /// Iterations terminate with the overlap is within 0.5 * tolerance. The tolerance should be
        /// smaller than sum of the shape radii.
        /// @warning the sweeps must have the same time interval.
        /// fraction=0 means the shapes begin touching/overlapped, and fraction=1 means the shapes don't touch.
        /// </summary>
        /// <param name="input">The input.</param>
        /// <param name="shapeA">The shape A.</param>
        /// <param name="shapeB">The shape B.</param>
        /// <returns>
        /// fraction between [0,1] in which the shapes first touch.
        /// </returns>
        public static float TimeOfImpact(TOIInput input)
        {
            ++ToiCalls;

            DistanceProxy proxyA = input.ProxyA;
            DistanceProxy proxyB = input.ProxyB;

            Sweep sweepA = input.SweepA;
            Sweep sweepB = input.SweepB;

            Box2DXDebug.Assert(sweepA.T0 == sweepB.T0);
            Box2DXDebug.Assert(1.0f - sweepA.T0 > Settings.FLT_EPSILON);

            float radius = proxyA._radius + proxyB._radius;
            float tolerance = input.Tolerance;

            float alpha = 0.0f;

            const int k_maxIterations = 1000; // TODO_ERIN b2Settings
            int iter = 0;
            float target = 0.0f;

            // Prepare input for distance query.
            SimplexCache cache = new SimplexCache();
            cache.Count = 0;
            DistanceInput distanceInput = new DistanceInput();
            distanceInput.proxyA = input.ProxyA;
            distanceInput.proxyB = input.ProxyB;
            distanceInput.UseRadii = false;

            for (;;)
            {
                Transform xfA, xfB;
                sweepA.GetTransform(out xfA, alpha);
                sweepB.GetTransform(out xfB, alpha);

                // Get the distance between shapes.
                distanceInput.TransformA = xfA;
                distanceInput.TransformB = xfB;
                DistanceOutput distanceOutput;
                Distance(out distanceOutput, cache, distanceInput);

                if (distanceOutput.Distance <= 0.0f)
                {
                    alpha = 1.0f;
                    break;
                }

                SeparationFunction fcn = new SeparationFunction();
                fcn.Initialize(cache, proxyA, xfA, proxyB, xfB);

                float separation = fcn.Evaluate(xfA, xfB);
                if (separation <= 0.0f)
                {
                    alpha = 1.0f;
                    break;
                }

                if (iter == 0)
                {
                    // Compute a reasonable target distance to give some breathing room
                    // for conservative advancement. We take advantage of the shape radii
                    // to create additional clearance.
                    if (separation > radius)
                    {
                        target = Math.Max(radius - tolerance, 0.75f*radius);
                    }
                    else
                    {
                        target = Math.Max(separation - tolerance, 0.02f*radius);
                    }
                }

                if (separation - target < 0.5f*tolerance)
                {
                    if (iter == 0)
                    {
                        alpha = 1.0f;
                        break;
                    }

                    break;
                }

            #if false
            // Dump the curve seen by the root finder
            {
            const int N = 100;
            float dx = 1.0f / N;
            float xs[N+1];
Ejemplo n.º 5
0
        /// <summary>
        /// Compute the closest points between two shapes. Supports any combination of:
        /// b2CircleShape, b2PolygonShape, b2EdgeShape. The simplex cache is input/output.
        /// On the first call set b2SimplexCache.count to zero.
        /// </summary>
        public static void Distance(out DistanceOutput output,
                        SimplexCache cache,
                        DistanceInput input)
        {
            ++GjkCalls;

            DistanceProxy proxyA = input.proxyA;
            DistanceProxy proxyB = input.proxyB;

            Transform transformA = input.TransformA;
            Transform transformB = input.TransformB;

            // Initialize the simplex.
            Simplex simplex = new Simplex();
            simplex.ReadCache(cache, proxyA, ref  transformA, proxyB, ref transformB);

            // Get simplex vertices as an array.
            SimplexVertex[] vertices = simplex.Vertices;
            const int k_maxIters = 20;

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
            int[] saveA = new int[3], saveB = new int[3];
            int saveCount = 0;

            Vec2 closestPoint = simplex.GetClosestPoint();
            float distanceSqr1 = closestPoint.LengthSquared();
            float distanceSqr2 = distanceSqr1;

            // Main iteration loop.
            int iter = 0;
            while (iter < k_maxIters)
            {
                // Copy simplex so we can identify duplicates.
                saveCount = simplex.Count;
                for (int i = 0; i < saveCount; ++i)
                {
                    saveA[i] = vertices[i].IndexA;
                    saveB[i] = vertices[i].IndexB;
                }

                switch (simplex.Count)
                {
                    case 1:
                        break;

                    case 2:
                        simplex.Solve2();
                        break;

                    case 3:
                        simplex.Solve3();
                        break;

                    default:
                        Box2DXDebug.Assert(false);
                        break;
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    break;
                }

                // Compute closest point.
                Vec2 p = simplex.GetClosestPoint();
                float distanceSqr = p.LengthSquared();

                // Ensure progress
                if (distanceSqr2 >= distanceSqr1)
                {
                    //break;
                }
                distanceSqr1 = distanceSqr2;

                // Get search direction.
                Vec2 d = simplex.GetSearchDirection();

                // Ensure the search direction is numerically fit.
                if (d.LengthSquared() < Settings.FLT_EPSILON * Settings.FLT_EPSILON)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }
                // Compute a tentative new simplex vertex using support points.
                SimplexVertex vertex = vertices[simplex.Count];
                vertex.IndexA = proxyA.GetSupport(Math.MulT(transformA.R, -d));
                vertex.WA = Math.Mul(transformA, proxyA.GetVertex(vertex.IndexA));

                vertex.IndexB = proxyB.GetSupport(Math.MulT(transformB.R, d));
                vertex.WB = Math.Mul(transformB, proxyB.GetVertex(vertex.IndexB));
                vertex.W = vertex.WB - vertex.WA;

                // Iteration count is equated to the number of support point calls.
                ++iter;
                ++GjkIters;

                // Check for duplicate support points. This is the main termination criteria.
                bool duplicate = false;
                for (int i = 0; i < saveCount; ++i)
                {
                    if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex.Count;
            }

            GjkMaxIters = Math.Max(GjkMaxIters, iter);

            // Prepare output.
            simplex.GetWitnessPoints(out output.PointA, out output.PointB);
            output.Distance = Vec2.Distance(output.PointA, output.PointB);
            output.Iterations = iter;

            // Cache the simplex.
            simplex.WriteCache(cache);

            // Apply radii if requested.
            if (input.UseRadii)
            {
                float rA = proxyA._radius;
                float rB = proxyB._radius;

                if (output.Distance > rA + rB && output.Distance > Settings.FLT_EPSILON)
                {
                    // Shapes are still no overlapped.
                    // Move the witness points to the outer surface.
                    output.Distance -= rA + rB;
                    Vec2 normal = output.PointB - output.PointA;
                    normal.Normalize();
                    output.PointA += rA * normal;
                    output.PointB -= rB * normal;
                }
                else
                {
                    // Shapes are overlapped when radii are considered.
                    // Move the witness points to the middle.
                    Vec2 p = 0.5f * (output.PointA + output.PointB);
                    output.PointA = p;
                    output.PointB = p;
                    output.Distance = 0.0f;
                }
            }
        }
Ejemplo n.º 6
0
        /// <summary>
        /// Compute the closest points between two shapes. Supports any combination of:
        /// b2CircleShape, b2PolygonShape, b2EdgeShape. The simplex cache is input/output.
        /// On the first call set b2SimplexCache.count to zero.
        /// </summary>
        public static void Distance(out DistanceOutput output,
                                    SimplexCache cache,
                                    DistanceInput input)
        {
            ++GjkCalls;

            DistanceProxy proxyA = input.proxyA;
            DistanceProxy proxyB = input.proxyB;

            Transform transformA = input.TransformA;
            Transform transformB = input.TransformB;

            // Initialize the simplex.
            Simplex simplex = new Simplex();

            simplex.ReadCache(cache, proxyA, ref transformA, proxyB, ref transformB);

            // Get simplex vertices as an array.
            SimplexVertex[] vertices   = simplex.Vertices;
            const int       k_maxIters = 20;

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
            int[] saveA     = new int[3], saveB = new int[3];
            int   saveCount = 0;

            Vec2  closestPoint = simplex.GetClosestPoint();
            float distanceSqr1 = closestPoint.LengthSquared();
            float distanceSqr2 = distanceSqr1;

            // Main iteration loop.
            int iter = 0;

            while (iter < k_maxIters)
            {
                // Copy simplex so we can identify duplicates.
                saveCount = simplex.Count;
                for (int i = 0; i < saveCount; ++i)
                {
                    saveA[i] = vertices[i].IndexA;
                    saveB[i] = vertices[i].IndexB;
                }

                switch (simplex.Count)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
                    Box2DXDebug.Assert(false);
                    break;
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    break;
                }

                // Compute closest point.
                Vec2  p           = simplex.GetClosestPoint();
                float distanceSqr = p.LengthSquared();

                // Ensure progress
                if (distanceSqr2 >= distanceSqr1)
                {
                    //break;
                }
                distanceSqr1 = distanceSqr2;

                // Get search direction.
                Vec2 d = simplex.GetSearchDirection();

                // Ensure the search direction is numerically fit.
                if (d.LengthSquared() < Settings.FLT_EPSILON * Settings.FLT_EPSILON)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }
                // Compute a tentative new simplex vertex using support points.
                SimplexVertex vertex = vertices[simplex.Count];
                vertex.IndexA = proxyA.GetSupport(Math.MulT(transformA.R, -d));
                vertex.WA     = Math.Mul(transformA, proxyA.GetVertex(vertex.IndexA));

                vertex.IndexB = proxyB.GetSupport(Math.MulT(transformB.R, d));
                vertex.WB     = Math.Mul(transformB, proxyB.GetVertex(vertex.IndexB));
                vertex.W      = vertex.WB - vertex.WA;

                // Iteration count is equated to the number of support point calls.
                ++iter;
                ++GjkIters;

                // Check for duplicate support points. This is the main termination criteria.
                bool duplicate = false;
                for (int i = 0; i < saveCount; ++i)
                {
                    if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex.Count;
            }

            GjkMaxIters = Math.Max(GjkMaxIters, iter);

            // Prepare output.
            simplex.GetWitnessPoints(out output.PointA, out output.PointB);
            output.Distance   = Vec2.Distance(output.PointA, output.PointB);
            output.Iterations = iter;

            // Cache the simplex.
            simplex.WriteCache(cache);

            // Apply radii if requested.
            if (input.UseRadii)
            {
                float rA = proxyA._radius;
                float rB = proxyB._radius;

                if (output.Distance > rA + rB && output.Distance > Settings.FLT_EPSILON)
                {
                    // Shapes are still no overlapped.
                    // Move the witness points to the outer surface.
                    output.Distance -= rA + rB;
                    Vec2 normal = output.PointB - output.PointA;
                    normal.Normalize();
                    output.PointA += rA * normal;
                    output.PointB -= rB * normal;
                }
                else
                {
                    // Shapes are overlapped when radii are considered.
                    // Move the witness points to the middle.
                    Vec2 p = 0.5f * (output.PointA + output.PointB);
                    output.PointA   = p;
                    output.PointB   = p;
                    output.Distance = 0.0f;
                }
            }
        }
Ejemplo n.º 7
0
        /// <summary>
        /// CCD via the secant method.
        /// Compute the time when two shapes begin to touch or touch at a closer distance.
        /// TOI considers the shape radii. It attempts to have the radii overlap by the tolerance.
        /// Iterations terminate with the overlap is within 0.5 * tolerance. The tolerance should be
        /// smaller than sum of the shape radii.
        /// @warning the sweeps must have the same time interval.
        /// fraction=0 means the shapes begin touching/overlapped, and fraction=1 means the shapes don't touch.
        /// </summary>
        /// <param name="input">The input.</param>
        /// <param name="shapeA">The shape A.</param>
        /// <param name="shapeB">The shape B.</param>
        /// <returns>
        /// fraction between [0,1] in which the shapes first touch.
        /// </returns>
        public static float TimeOfImpact(TOIInput input)
        {
            ++ToiCalls;

            DistanceProxy proxyA = input.ProxyA;
            DistanceProxy proxyB = input.ProxyB;

            Sweep sweepA = input.SweepA;
            Sweep sweepB = input.SweepB;

            Box2DXDebug.Assert(sweepA.T0 == sweepB.T0);
            Box2DXDebug.Assert(1.0f - sweepA.T0 > Settings.FLT_EPSILON);

            float radius    = proxyA._radius + proxyB._radius;
            float tolerance = input.Tolerance;

            float alpha = 0.0f;

            const int k_maxIterations = 1000; // TODO_ERIN b2Settings
            int       iter            = 0;
            float     target          = 0.0f;

            // Prepare input for distance query.
            SimplexCache cache = new SimplexCache();

            cache.Count = 0;
            DistanceInput distanceInput = new DistanceInput();

            distanceInput.proxyA   = input.ProxyA;
            distanceInput.proxyB   = input.ProxyB;
            distanceInput.UseRadii = false;

            for (;;)
            {
                Transform xfA, xfB;
                sweepA.GetTransform(out xfA, alpha);
                sweepB.GetTransform(out xfB, alpha);

                // Get the distance between shapes.
                distanceInput.TransformA = xfA;
                distanceInput.TransformB = xfB;
                DistanceOutput distanceOutput;
                Distance(out distanceOutput, cache, distanceInput);

                if (distanceOutput.Distance <= 0.0f)
                {
                    alpha = 1.0f;
                    break;
                }

                SeparationFunction fcn = new SeparationFunction();
                fcn.Initialize(cache, proxyA, xfA, proxyB, xfB);

                float separation = fcn.Evaluate(xfA, xfB);
                if (separation <= 0.0f)
                {
                    alpha = 1.0f;
                    break;
                }

                if (iter == 0)
                {
                    // Compute a reasonable target distance to give some breathing room
                    // for conservative advancement. We take advantage of the shape radii
                    // to create additional clearance.
                    if (separation > radius)
                    {
                        target = Math.Max(radius - tolerance, 0.75f * radius);
                    }
                    else
                    {
                        target = Math.Max(separation - tolerance, 0.02f * radius);
                    }
                }

                if (separation - target < 0.5f * tolerance)
                {
                    if (iter == 0)
                    {
                        alpha = 1.0f;
                        break;
                    }

                    break;
                }

#if false
                // Dump the curve seen by the root finder
                {
                    const int N  = 100;
                    float     dx = 1.0f / N;
                    float     xs[N + 1];