Ejemplo n.º 1
0
		public override void Step(TestSettings settings)
		{
			Manifold manifold;
			Collision.CollidePolygons(out manifold, m_polygonA, m_transformA, m_polygonB, m_transformB);

			WorldManifold worldManifold = new WorldManifold();
			worldManifold.Initialize(manifold, m_transformA, m_polygonA.m_radius, m_transformB, m_polygonB.m_radius);

			m_debugDraw.DrawString("point count = {0}", manifold.points.Count());
			

			{
				Color color = Color.FromArgb(225, 225, 225);
				Vec2[] v = new Vec2[Settings._maxPolygonVertices];
				for (int i = 0; i < m_polygonA.m_count; ++i)
				{
					v[i] = Utilities.Mul(m_transformA, m_polygonA.m_vertices[i]);
				}
				m_debugDraw.DrawPolygon(v, m_polygonA.m_count, color);

				for (int i = 0; i < m_polygonB.m_count; ++i)
				{
					v[i] = Utilities.Mul(m_transformB, m_polygonB.m_vertices[i]);
				}
				m_debugDraw.DrawPolygon(v, m_polygonB.m_count, color);
			}

			for (int i = 0; i < manifold.points.Count(); ++i)
			{
				m_debugDraw.DrawPoint(worldManifold.points[i], 4.0f, Color.FromArgb(225, 75, 75));
			}
		}
Ejemplo n.º 2
0
		/// Get the world manifold.
		public void GetWorldManifold(out WorldManifold worldManifold){
			throw new NotImplementedException();
			//const Body* bodyA = m_fixtureA.GetBody();
			//const Body* bodyB = m_fixtureB.GetBody();
			//const Shape* shapeA = m_fixtureA.GetShape();
			//const Shape* shapeB = m_fixtureB.GetShape();

			//worldManifold.Initialize(&m_manifold, bodyA.GetTransform(), shapeA.m_radius, bodyB.GetTransform(), shapeB.m_radius);
		}
Ejemplo n.º 3
0
        /// Get the world manifold.
        public void GetWorldManifold(out WorldManifold worldManifold)
        {
            throw new NotImplementedException();
            //const Body* bodyA = m_fixtureA.GetBody();
            //const Body* bodyB = m_fixtureB.GetBody();
            //const Shape* shapeA = m_fixtureA.GetShape();
            //const Shape* shapeB = m_fixtureB.GetShape();

            //worldManifold.Initialize(&m_manifold, bodyA.GetTransform(), shapeA.m_radius, bodyB.GetTransform(), shapeB.m_radius);
        }
Ejemplo n.º 4
0
        /// Get the world manifold.
        public void GetWorldManifold(out WorldManifold worldManifold)
        {
            Body  bodyA  = _fixtureA.GetBody();
            Body  bodyB  = _fixtureB.GetBody();
            Shape shapeA = _fixtureA.GetShape();
            Shape shapeB = _fixtureB.GetShape();

            Transform xfA, xfB;

            bodyA.GetTransform(out xfA);
            bodyB.GetTransform(out xfB);

            worldManifold = new WorldManifold(ref _manifold, ref xfA, shapeA._radius, ref xfB, shapeB._radius);
        }
Ejemplo n.º 5
0
        public void Reset(Contact[] contacts, int contactCount, float impulseRatio)
        {
            _contacts = contacts;

            _constraintCount = contactCount;

            // grow the array
            if (_constraints == null || _constraints.Length < _constraintCount)
            {
                _constraints = new ContactConstraint[_constraintCount * 2];
            }

            for (int i = 0; i < _constraintCount; ++i)
            {
                Contact contact = contacts[i];

                Fixture  fixtureA = contact._fixtureA;
                Fixture  fixtureB = contact._fixtureB;
                Shape    shapeA   = fixtureA.GetShape();
                Shape    shapeB   = fixtureB.GetShape();
                float    radiusA  = shapeA._radius;
                float    radiusB  = shapeB._radius;
                Body     bodyA    = fixtureA.GetBody();
                Body     bodyB    = fixtureB.GetBody();
                Manifold manifold;
                contact.GetManifold(out manifold);

                float friction    = Settings.b2MixFriction(fixtureA.GetFriction(), fixtureB.GetFriction());
                float restitution = Settings.b2MixRestitution(fixtureA.GetRestitution(), fixtureB.GetRestitution());

                Vector2 vA = bodyA._linearVelocity;
                Vector2 vB = bodyB._linearVelocity;
                float   wA = bodyA._angularVelocity;
                float   wB = bodyB._angularVelocity;

                //Debug.Assert(manifold._pointCount > 0);

                WorldManifold worldManifold = new WorldManifold(ref manifold, ref bodyA._xf, radiusA, ref bodyB._xf, radiusB);

                ContactConstraint cc = _constraints[i];
                cc.bodyA      = bodyA;
                cc.bodyB      = bodyB;
                cc.manifold   = manifold;
                cc.normal     = worldManifold._normal;
                cc.pointCount = manifold._pointCount;
                cc.friction   = friction;

                cc.localNormal = manifold._localNormal;
                cc.localPoint  = manifold._localPoint;
                cc.radius      = radiusA + radiusB;
                cc.type        = manifold._type;

                for (int j = 0; j < cc.pointCount; ++j)
                {
                    ManifoldPoint          cp  = manifold._points[j];
                    ContactConstraintPoint ccp = cc.points[j];

                    ccp.normalImpulse  = impulseRatio * cp.NormalImpulse;
                    ccp.tangentImpulse = impulseRatio * cp.TangentImpulse;

                    ccp.localPoint = cp.LocalPoint;

                    ccp.rA = worldManifold._points[j] - bodyA._sweep.c;
                    ccp.rB = worldManifold._points[j] - bodyB._sweep.c;

#if MATH_OVERLOADS
                    float rnA = MathUtils.Cross(ccp.rA, cc.normal);
                    float rnB = MathUtils.Cross(ccp.rB, cc.normal);
#else
                    float rnA = ccp.rA.x * cc.normal.y - ccp.rA.y * cc.normal.x;
                    float rnB = ccp.rB.x * cc.normal.y - ccp.rB.y * cc.normal.x;
#endif
                    rnA *= rnA;
                    rnB *= rnB;

                    float kNormal = bodyA._invMass + bodyB._invMass + bodyA._invI * rnA + bodyB._invI * rnB;

                    //Debug.Assert(kNormal > Settings.b2_epsilon);
                    ccp.normalMass = 1.0f / kNormal;

#if MATH_OVERLOADS
                    Vector2 tangent = MathUtils.Cross(cc.normal, 1.0f);

                    float rtA = MathUtils.Cross(ccp.rA, tangent);
                    float rtB = MathUtils.Cross(ccp.rB, tangent);
#else
                    Vector2 tangent = new Vector2(cc.normal.y, -cc.normal.x);

                    float rtA = ccp.rA.x * tangent.y - ccp.rA.y * tangent.x;
                    float rtB = ccp.rB.x * tangent.y - ccp.rB.y * tangent.x;
#endif
                    rtA *= rtA;
                    rtB *= rtB;
                    float kTangent = bodyA._invMass + bodyB._invMass + bodyA._invI * rtA + bodyB._invI * rtB;

                    //Debug.Assert(kTangent > Settings.b2_epsilon);
                    ccp.tangentMass = 1.0f / kTangent;

                    // Setup a velocity bias for restitution.
                    ccp.velocityBias = 0.0f;
                    float vRel = Vector2.Dot(cc.normal, vB + MathUtils.Cross(wB, ccp.rB) - vA - MathUtils.Cross(wA, ccp.rA));
                    if (vRel < -Settings.b2_velocityThreshold)
                    {
                        ccp.velocityBias = -restitution * vRel;
                    }

                    cc.points[j] = ccp;
                }

                // If we have two points, then prepare the block solver.
                if (cc.pointCount == 2)
                {
                    ContactConstraintPoint ccp1 = cc.points[0];
                    ContactConstraintPoint ccp2 = cc.points[1];

                    float invMassA = bodyA._invMass;
                    float invIA    = bodyA._invI;
                    float invMassB = bodyB._invMass;
                    float invIB    = bodyB._invI;

                    float rn1A = MathUtils.Cross(ccp1.rA, cc.normal);
                    float rn1B = MathUtils.Cross(ccp1.rB, cc.normal);
                    float rn2A = MathUtils.Cross(ccp2.rA, cc.normal);
                    float rn2B = MathUtils.Cross(ccp2.rB, cc.normal);

                    float k11 = invMassA + invMassB + invIA * rn1A * rn1A + invIB * rn1B * rn1B;
                    float k22 = invMassA + invMassB + invIA * rn2A * rn2A + invIB * rn2B * rn2B;
                    float k12 = invMassA + invMassB + invIA * rn1A * rn2A + invIB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    const float k_maxConditionNumber = 100.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        cc.K          = new Mat22(new Vector2(k11, k12), new Vector2(k12, k22));
                        cc.normalMass = cc.K.GetInverse();
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        cc.pointCount = 1;
                    }
                }

                _constraints[i] = cc;
            }
        }
Ejemplo n.º 6
0
		public void InitializeVelocityConstraints() {
			for (int i = 0; i < m_contacts.Count(); ++i) {
				ContactVelocityConstraint vc = m_velocityConstraints[i];
				ContactPositionConstraint pc = m_positionConstraints[i];

				float radiusA = pc.radiusA;
				float radiusB = pc.radiusB;
				Manifold manifold = m_contacts[vc.contactIndex].GetManifold();

				int indexA = vc.indexA;
				int indexB = vc.indexB;

				float mA = vc.invMassA;
				float mB = vc.invMassB;
				float iA = vc.invIA;
				float iB = vc.invIB;
				Vec2 localCenterA = pc.localCenterA;
				Vec2 localCenterB = pc.localCenterB;

				Vec2 cA = m_positions[indexA].c;
				float aA = m_positions[indexA].a;
				Vec2 vA = m_velocities[indexA].v;
				float wA = m_velocities[indexA].w;

				Vec2 cB = m_positions[indexB].c;
				float aB = m_positions[indexB].a;
				Vec2 vB = m_velocities[indexB].v;
				float wB = m_velocities[indexB].w;

				Utilities.Assert(manifold.points.Count() > 0);

				Transform xfA = new Transform();
				Transform xfB = new Transform();
				xfA.q.Set(aA);
				xfB.q.Set(aB);
				xfA.p = cA - Utilities.Mul(xfA.q, localCenterA);
				xfB.p = cB - Utilities.Mul(xfB.q, localCenterB);

				WorldManifold worldManifold = new WorldManifold();
				worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB);

				vc.normal = worldManifold.normal;

				int pointCount = vc.points.Count;
				for (int j = 0; j < pointCount; ++j) {
					VelocityConstraintPoint vcp = vc.points[j];

					vcp.rA = worldManifold.points[j] - cA;
					vcp.rB = worldManifold.points[j] - cB;

					float rnA = Utilities.Cross(vcp.rA, vc.normal);
					float rnB = Utilities.Cross(vcp.rB, vc.normal);

					float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

					vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;

					Vec2 tangent = Utilities.Cross(vc.normal, 1.0f);

					float rtA = Utilities.Cross(vcp.rA, tangent);
					float rtB = Utilities.Cross(vcp.rB, tangent);

					float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;

					vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;

					// Setup a velocity bias for restitution.
					vcp.velocityBias = 0.0f;
					float vRel = Utilities.Dot(vc.normal, vB + Utilities.Cross(wB, vcp.rB) - vA - Utilities.Cross(wA, vcp.rA));
					if (vRel < -Settings._velocityThreshold) {
						vcp.velocityBias = -vc.restitution * vRel;
					}
				}

				// If we have two points, then prepare the block solver.
				if (vc.points.Count() == 2) {
					VelocityConstraintPoint vcp1 = vc.points[0];
					VelocityConstraintPoint vcp2 = vc.points[1];

					float rn1A = Utilities.Cross(vcp1.rA, vc.normal);
					float rn1B = Utilities.Cross(vcp1.rB, vc.normal);
					float rn2A = Utilities.Cross(vcp2.rA, vc.normal);
					float rn2B = Utilities.Cross(vcp2.rB, vc.normal);

					float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
					float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
					float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;

					// Ensure a reasonable condition number.
					const float k_maxConditionNumber = 1000.0f;
					if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) {
						// K is safe to invert.
						vc.K.ex.Set(k11, k12);
						vc.K.ey.Set(k12, k22);
						vc.normalMass = vc.K.GetInverse();
					} else {
						// The constraints are redundant, just use one.
						// TODO_ERIN use deepest?
						vc.points.Clear();
						vc.points.Add(new VelocityConstraintPoint());
					}
				}
			}
		}
Ejemplo n.º 7
0
        public void InitializeVelocityConstraints()
        {
            for (int i = 0; i < m_contacts.Count(); ++i)
            {
                ContactVelocityConstraint vc = m_velocityConstraints[i];
                ContactPositionConstraint pc = m_positionConstraints[i];

                float    radiusA  = pc.radiusA;
                float    radiusB  = pc.radiusB;
                Manifold manifold = m_contacts[vc.contactIndex].GetManifold();

                int indexA = vc.indexA;
                int indexB = vc.indexB;

                float mA           = vc.invMassA;
                float mB           = vc.invMassB;
                float iA           = vc.invIA;
                float iB           = vc.invIB;
                Vec2  localCenterA = pc.localCenterA;
                Vec2  localCenterB = pc.localCenterB;

                Vec2  cA = m_positions[indexA].c;
                float aA = m_positions[indexA].a;
                Vec2  vA = m_velocities[indexA].v;
                float wA = m_velocities[indexA].w;

                Vec2  cB = m_positions[indexB].c;
                float aB = m_positions[indexB].a;
                Vec2  vB = m_velocities[indexB].v;
                float wB = m_velocities[indexB].w;

                Utilities.Assert(manifold.points.Count() > 0);

                Transform xfA = new Transform();
                Transform xfB = new Transform();
                xfA.q.Set(aA);
                xfB.q.Set(aB);
                xfA.p = cA - Utilities.Mul(xfA.q, localCenterA);
                xfB.p = cB - Utilities.Mul(xfB.q, localCenterB);

                WorldManifold worldManifold = new WorldManifold();
                worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB);

                vc.normal = worldManifold.normal;

                int pointCount = vc.points.Count;
                for (int j = 0; j < pointCount; ++j)
                {
                    VelocityConstraintPoint vcp = vc.points[j];

                    vcp.rA = worldManifold.points[j] - cA;
                    vcp.rB = worldManifold.points[j] - cB;

                    float rnA = Utilities.Cross(vcp.rA, vc.normal);
                    float rnB = Utilities.Cross(vcp.rB, vc.normal);

                    float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

                    vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;

                    Vec2 tangent = Utilities.Cross(vc.normal, 1.0f);

                    float rtA = Utilities.Cross(vcp.rA, tangent);
                    float rtB = Utilities.Cross(vcp.rB, tangent);

                    float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;

                    vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;

                    // Setup a velocity bias for restitution.
                    vcp.velocityBias = 0.0f;
                    float vRel = Utilities.Dot(vc.normal, vB + Utilities.Cross(wB, vcp.rB) - vA - Utilities.Cross(wA, vcp.rA));
                    if (vRel < -Settings._velocityThreshold)
                    {
                        vcp.velocityBias = -vc.restitution * vRel;
                    }
                }

                // If we have two points, then prepare the block solver.
                if (vc.points.Count() == 2)
                {
                    VelocityConstraintPoint vcp1 = vc.points[0];
                    VelocityConstraintPoint vcp2 = vc.points[1];

                    float rn1A = Utilities.Cross(vcp1.rA, vc.normal);
                    float rn1B = Utilities.Cross(vcp1.rB, vc.normal);
                    float rn2A = Utilities.Cross(vcp2.rA, vc.normal);
                    float rn2B = Utilities.Cross(vcp2.rB, vc.normal);

                    float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
                    float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
                    float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    const float k_maxConditionNumber = 1000.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        vc.K.ex.Set(k11, k12);
                        vc.K.ey.Set(k12, k22);
                        vc.normalMass = vc.K.GetInverse();
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        vc.points.Clear();
                        vc.points.Add(new VelocityConstraintPoint());
                    }
                }
            }
        }