Ejemplo n.º 1
0
        // From Real-time Collision Detection, p179.
        public void RayCast(out RayCastOutput output, ref RayCastInput input)
        {
            output = new RayCastOutput();

            float tmin = -Settings.b2_FLT_MAX;
            float tmax = Settings.b2_FLT_MAX;

            output.hit = false;

            Vector2 p = input.p1;
            Vector2 d = input.p2 - input.p1;
            Vector2 absD = MathUtils.Abs(d);

            Vector2 normal = Vector2.Zero;

            for (int i = 0; i < 2; ++i)
            {
                float absD_i = i == 0 ? absD.X : absD.Y;
                float lowerBound_i = i == 0 ? lowerBound.X : lowerBound.Y;
                float upperBound_i = i == 0 ? upperBound.X : upperBound.Y;
                float p_i = i == 0 ? p.X : p.Y;

                if (absD_i < Settings.b2_FLT_EPSILON)
                {
                    // Parallel.
                    if (p_i < lowerBound_i || upperBound_i < p_i)
                    {
                        return;
                    }
                }
                else
                {
                    float d_i = i == 0 ? d.X : d.Y;

                    float inv_d = 1.0f / d_i;
                    float t1 = (lowerBound_i - p_i) * inv_d;
                    float t2 = (upperBound_i - p_i) * inv_d;

                    // Sign of the normal vector.
                    float s = -1.0f;

                    if (t1 > t2)
                    {
                        MathUtils.Swap<float>(ref t1, ref t2);
                        s = 1.0f;
                    }

                    // Push the min up
                    if (t1 > tmin)
                    {
                        if (i == 0)
                        {
                            normal.X = s;
                        }
                        else
                        {
                            normal.Y = s;
                        }

                        tmin = t1;
                    }

                    // Pull the max down
                    tmax = Math.Min(tmax, t2);

                    if (tmin > tmax)
                    {
                        return;
                    }
                }
            }

            // Does the ray start inside the box?
            // Does the ray intersect beyond the max fraction?
            if (tmin < 0.0f || input.maxFraction < tmin)
            {
                return;
            }

            // Intersection.
            output.fraction = tmin;
            output.normal = normal;
            output.hit = true;
        }
Ejemplo n.º 2
0
        /// Ray-cast against the proxies in the tree. This relies on the callback
        /// to perform a exact ray-cast in the case were the proxy contains a shape.
        /// The callback also performs the any collision filtering. This has performance
        /// roughly equal to k * log(n), where k is the number of collisions and n is the
        /// number of proxies in the tree.
        /// @param input the ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
        /// @param callback a callback class that is called for each proxy that is hit by the ray.
        public void RayCast(RayCastCallback callback, ref RayCastInput input)
        {
            Vector2 p1 = input.p1;
            Vector2 p2 = input.p2;
            Vector2 r = p2 - p1;
            Debug.Assert(r.LengthSquared() > 0.0f);
            r.Normalize();

            // v is perpendicular to the segment.
            Vector2 v = MathUtils.Cross(1.0f, r);
            Vector2 abs_v = MathUtils.Abs(v);

            // Separating axis for segment (Gino, p80).
            // |dot(v, p1 - c)| > dot(|v|, h)

            float maxFraction = input.maxFraction;

            // Build a bounding box for the segment.
            AABB segmentAABB = new AABB();
            {
                Vector2 t = p1 + maxFraction * (p2 - p1);
                segmentAABB.lowerBound = Vector2.Min(p1, t);
                segmentAABB.upperBound = Vector2.Max(p1, t);
            }

            int count = 0;
            stack[count++] = _root;

            while (count > 0)
            {
                int nodeId = stack[--count];
                if (nodeId == NullNode)
                {
                    continue;
                }

                DynamicTreeNode node = _nodes[nodeId];

                if (AABB.TestOverlap(ref node.aabb, ref segmentAABB) == false)
                {
                    continue;
                }

                // Separating axis for segment (Gino, p80).
                // |dot(v, p1 - c)| > dot(|v|, h)
                Vector2 c = node.aabb.GetCenter();
                Vector2 h = node.aabb.GetExtents();
                float separation = Math.Abs(Vector2.Dot(v, p1 - c)) - Vector2.Dot(abs_v, h);
                if (separation > 0.0f)
                {
                    continue;
                }

                if (node.IsLeaf())
                {
                    RayCastInput subInput;
                    subInput.p1 = input.p1;
                    subInput.p2 = input.p2;
                    subInput.maxFraction = maxFraction;

                    RayCastOutput output;

                    callback(out output, ref subInput, node.userData);

                    if (output.hit)
                    {
                        // Early exit.
                        if (output.fraction == 0.0f)
                        {
                            return;
                        }

                        maxFraction = output.fraction;

                        // Update segment bounding box.
                        {
                            Vector2 t = p1 + maxFraction * (p2 - p1);
                            segmentAABB.lowerBound = Vector2.Min(p1, t);
                            segmentAABB.upperBound = Vector2.Max(p1, t);
                        }
                    }
                }
                else
                {
                    Debug.Assert(count + 1 < k_stackSize);
                    stack[count++] = node.child1;
                    stack[count++] = node.child2;
                }
            }
        }