Ejemplo n.º 1
0
    public static void Predict(
      IROMatrix XU, // unknown spectrum or spectra,  horizontal oriented
      IROMatrix xLoads, // x-loads matrix
      IROMatrix yLoads, // y-loads matrix
      IROMatrix W, // weighting matrix
      IROMatrix V,  // Cross product vector
      int numFactors, // number of factors to use for prediction
      IMatrix predictedY, // Matrix of predicted y-values, must be same number of rows as spectra
      IMatrix spectralResiduals // Matrix of spectral residuals, n rows x 1 column, can be zero
      )
    {

      // now predicting a "unkown" spectra
      MatrixMath.Scalar si = new MatrixMath.Scalar(0);
      MatrixMath.HorizontalVector Cu = new MatrixMath.HorizontalVector(yLoads.Columns);

      MatrixMath.HorizontalVector wi = new MatrixMath.HorizontalVector(XU.Columns);
      MatrixMath.HorizontalVector cuadd = new MatrixMath.HorizontalVector(yLoads.Columns);
      
      // xu holds a single spectrum extracted out of XU
      MatrixMath.HorizontalVector xu = new MatrixMath.HorizontalVector(XU.Columns);

      // xl holds temporarily a row of the xLoads matrix+
      MatrixMath.HorizontalVector xl = new MatrixMath.HorizontalVector(xLoads.Columns);


      int maxFactors = Math.Min(yLoads.Rows,numFactors);
      

      for(int nSpectrum=0;nSpectrum<XU.Rows;nSpectrum++)
      {
        MatrixMath.Submatrix(XU,xu,nSpectrum,0); // extract one spectrum to predict
        MatrixMath.ZeroMatrix(Cu); // Set Cu=0
        for(int i=0;i<maxFactors;i++)
        {
          //1. Calculate the unknown spectral score for a weighting vector
          MatrixMath.Submatrix(W,wi,i,0);
          MatrixMath.MultiplySecondTransposed(wi,xu,si);
          // take the y loading vector
          MatrixMath.Submatrix(yLoads,cuadd,i,0);
          // and multiply it with the cross product and the score
          MatrixMath.MultiplyScalar(cuadd,si*V[0,i],cuadd);
          // Add it to the predicted y-values
          MatrixMath.Add(Cu,cuadd,Cu);
          // remove the spectral contribution of the factor from the spectrum
          // TODO this is quite ineffective: in every loop we extract the xl vector, we have to find a shortcut for this!
          MatrixMath.Submatrix(xLoads,xl,i,0);
          MatrixMath.SubtractProductFromSelf(xl,(double)si,xu);
        }
        // xu now contains the spectral residual,
        // Cu now contains the predicted y values
        if(null!=predictedY)
        {
          MatrixMath.SetRow(Cu,0,predictedY,nSpectrum);
        }

        if(null!=spectralResiduals)
        {
          spectralResiduals[nSpectrum,0] = MatrixMath.SumOfSquares(xu);
        }

      } // for each spectrum in XU
    } // end partial-least-squares-predict
Ejemplo n.º 2
0
    /// <summary>
    /// Partial least squares (PLS) decomposition of the matrizes X and Y.
    /// </summary>
    /// <param name="_X">The X ("spectrum") matrix, centered and preprocessed.</param>
    /// <param name="_Y">The Y ("concentration") matrix (centered).</param>
    /// <param name="numFactors">Number of factors to calculate.</param>
    /// <param name="xLoads">Returns the matrix of eigenvectors of X. Should be initially empty.</param>
    /// <param name="yLoads">Returns the matrix of eigenvectors of Y. Should be initially empty. </param>
    /// <param name="W">Returns the matrix of weighting values. Should be initially empty.</param>
    /// <param name="V">Returns the vector of cross products. Should be initially empty.</param>
    /// <param name="PRESS">If not null, the PRESS value of each factor is stored (vertically) here. </param>
    public static void ExecuteAnalysis(
      IROMatrix _X, // matrix of spectra (a spectra is a row of this matrix)
      IROMatrix _Y, // matrix of concentrations (a mixture is a row of this matrix)
      ref int numFactors,
      IBottomExtensibleMatrix xLoads, // out: the loads of the X matrix
      IBottomExtensibleMatrix yLoads, // out: the loads of the Y matrix
      IBottomExtensibleMatrix W, // matrix of weighting values
      IRightExtensibleMatrix V,  // matrix of cross products
      IExtensibleVector PRESS //vector of Y PRESS values
      )
    {
      // used variables:
      // n: number of spectra (number of tests, number of experiments)
      // p: number of slots (frequencies, ..) in each spectrum
      // m: number of constitutents (number of y values in each measurement)
      
      // X : n-p matrix of spectra (each spectra is a horizontal row)
      // Y : n-m matrix of concentrations


      const int maxIterations = 1500; // max number of iterations in one factorization step
      const double accuracy = 1E-12; // accuracy that should be reached between subsequent calculations of the u-vector



      // use the mean spectrum as first row of the W matrix
      MatrixMath.HorizontalVector mean = new MatrixMath.HorizontalVector(_X.Columns);
      //  MatrixMath.ColumnsToZeroMean(X,mean);
      //W.AppendBottom(mean);

      IMatrix X = new MatrixMath.BEMatrix(_X.Rows,_X.Columns);
      MatrixMath.Copy(_X,X);
      IMatrix Y = new MatrixMath.BEMatrix(_Y.Rows,_Y.Columns);
      MatrixMath.Copy(_Y,Y);

      IMatrix u_prev = null;
      IMatrix w = new MatrixMath.HorizontalVector(X.Columns); // horizontal vector of X (spectral) weighting
      IMatrix t = new MatrixMath.VerticalVector(X.Rows); // vertical vector of X  scores
      IMatrix u = new MatrixMath.VerticalVector(X.Rows); // vertical vector of Y scores
      IMatrix p = new MatrixMath.HorizontalVector(X.Columns); // horizontal vector of X loads
      IMatrix q = new MatrixMath.HorizontalVector(Y.Columns); // horizontal vector of Y loads

      int maxFactors = Math.Min(X.Columns,X.Rows);
      numFactors = numFactors<=0 ? maxFactors : Math.Min(numFactors,maxFactors);

      if(PRESS!=null)
      {
        PRESS.Append(new MatrixMath.Scalar(MatrixMath.SumOfSquares(Y))); // Press value for not decomposed Y
      }

      for(int nFactor=0; nFactor<numFactors; nFactor++)
      {
        //Console.WriteLine("Factor_{0}:",nFactor);
        //Console.WriteLine("X:"+X.ToString());
        //Console.WriteLine("Y:"+Y.ToString());

  
        // 1. Use as start vector for the y score the first column of the 
        // y-matrix
        MatrixMath.Submatrix(Y,u); // u is now a vertical vector of concentrations of the first constituents

        for(int iter=0;iter<maxIterations;iter++)
        {
          // 2. Calculate the X (spectrum) weighting vector
          MatrixMath.MultiplyFirstTransposed(u,X,w); // w is a horizontal vector

          // 3. Normalize w to unit length
          MatrixMath.NormalizeRows(w); // w now has unit length

          // 4. Calculate X (spectral) scores
          MatrixMath.MultiplySecondTransposed(X,w,t); // t is a vertical vector of n numbers

          // 5. Calculate the Y (concentration) loading vector
          MatrixMath.MultiplyFirstTransposed(t,Y,q); // q is a horizontal vector of m (number of constitutents)

          // 5.1 Normalize q to unit length
          MatrixMath.NormalizeRows(q);

          // 6. Calculate the Y (concentration) score vector u
          MatrixMath.MultiplySecondTransposed(Y,q,u); // u is a vertical vector of n numbers

          // 6.1 Compare
          // Compare this with the previous one 
          if(u_prev!=null && MatrixMath.IsEqual(u_prev,u,accuracy))
            break;
          if(u_prev==null)
            u_prev = new MatrixMath.VerticalVector(X.Rows);
          MatrixMath.Copy(u,u_prev); // stores the content of u in u_prev
        } // for all iterations

        // Store the scores of X
        //factors.AppendRight(t);


        // 7. Calculate the inner scalar (cross product)
        double length_of_t = MatrixMath.LengthOf(t); 
        MatrixMath.Scalar v = new MatrixMath.Scalar(0);
        MatrixMath.MultiplyFirstTransposed(u,t,v);
        if(length_of_t!=0)
          v = v/MatrixMath.Square(length_of_t); 
      
        // 8. Calculate the new loads for the X (spectral) matrix
        MatrixMath.MultiplyFirstTransposed(t,X,p); // p is a horizontal vector of loads
        // Normalize p by the spectral scores

        if(length_of_t!=0)
          MatrixMath.MultiplyScalar(p,1/MatrixMath.Square(length_of_t),p);

        // 9. Calculate the new residua for the X (spectral) and Y (concentration) matrix
        //MatrixMath.MultiplyScalar(t,length_of_t*v,t); // original t times the cross product

        MatrixMath.SubtractProductFromSelf(t,p,X);
        
        MatrixMath.MultiplyScalar(t,v,t); // original t times the cross product
        MatrixMath.SubtractProductFromSelf(t,q,Y); // to calculate residual Y

        // Store the loads of X and Y in the output result matrix
        xLoads.AppendBottom(p);
        yLoads.AppendBottom(q);
        W.AppendBottom(w);
        V.AppendRight(v);
    
        if(PRESS!=null)
        {
          double pressValue=MatrixMath.SumOfSquares(Y);
          PRESS.Append(new MatrixMath.Scalar(pressValue));
        }
        // Calculate SEPcv. If SEPcv is greater than for the actual number of factors,
        // break since the optimal number of factors was found. If not, repeat the calculations
        // with the residual matrizes for the next factor.
      } // for all factors
    }
 /// <summary>
 /// Preprocess the y values for analysis (mean center, scale currently not used).
 /// </summary>
 /// <param name="matrixY">Matrix of y values. On return, this contains the preprocessed y values.</param>
 /// <param name="meanY">On return, contains the mean y value(s).</param>
 /// <param name="scaleY">On return, contains the scale value(s).</param>
 public static void PreprocessYForAnalysis(IMatrix matrixY,
   out IVector meanY, out IVector scaleY)
 {
   meanY = new MatrixMath.HorizontalVector(matrixY.Columns);
   scaleY = new MatrixMath.HorizontalVector(matrixY.Columns);
   VectorMath.Fill(scaleY,1);
   MatrixMath.ColumnsToZeroMean(matrixY, meanY);
 }
Ejemplo n.º 4
0
    /// <summary>
    /// Makes a PCA (a principal component analysis) of the table or the selected columns / rows and stores the results in a newly created table.
    /// </summary>
    /// <param name="mainDocument">The main document of the application.</param>
    /// <param name="srctable">The table where the data come from.</param>
    /// <param name="selectedColumns">The selected columns.</param>
    /// <param name="selectedRows">The selected rows.</param>
    /// <param name="bHorizontalOrientedSpectrum">True if a spectrum is a single row, False if a spectrum is a single column.</param>
    /// <param name="maxNumberOfFactors">The maximum number of factors to calculate.</param>
    /// <returns></returns>
    public static string PrincipalComponentAnalysis(
      Altaxo.AltaxoDocument mainDocument,
      Altaxo.Data.DataTable srctable,
      IAscendingIntegerCollection selectedColumns,
      IAscendingIntegerCollection selectedRows,
      bool bHorizontalOrientedSpectrum,
      int maxNumberOfFactors
      )
    {
      bool bUseSelectedColumns = (null!=selectedColumns && 0!=selectedColumns.Count);
      int prenumcols = bUseSelectedColumns ? selectedColumns.Count : srctable.DataColumns.ColumnCount;
      
      // check for the number of numeric columns
      int numcols = 0;
      for(int i=0;i<prenumcols;i++)
      {
        int idx = bUseSelectedColumns ? selectedColumns[i] : i;
        if(srctable[i] is Altaxo.Data.INumericColumn)
          numcols++;
      }

      // check the number of rows
      bool bUseSelectedRows = (null!=selectedRows && 0!=selectedRows.Count);

      int numrows;
      if(bUseSelectedRows)
        numrows = selectedRows.Count;
      else
      {
        numrows = 0;
        for(int i=0;i<numcols;i++)
        {
          int idx = bUseSelectedColumns ? selectedColumns[i] : i;
          numrows = Math.Max(numrows,srctable[idx].Count);
        }     
      }

      // check that both dimensions are at least 2 - otherwise PCA is not possible
      if(numrows<2)
        return "At least two rows are neccessary to do Principal Component Analysis!";
      if(numcols<2)
        return "At least two numeric columns are neccessary to do Principal Component Analysis!";

      // Create a matrix of appropriate dimensions and fill it

      MatrixMath.BEMatrix matrixX;
      if(bHorizontalOrientedSpectrum)
      {
        matrixX = new MatrixMath.BEMatrix(numrows,numcols);
        int ccol = 0; // current column in the matrix
        for(int i=0;i<prenumcols;i++)
        {
          int colidx = bUseSelectedColumns ? selectedColumns[i] : i;
          Altaxo.Data.INumericColumn col = srctable[colidx] as Altaxo.Data.INumericColumn;
          if(null!=col)
          {
            for(int j=0;j<numrows;j++)
            {
              int rowidx = bUseSelectedRows ? selectedRows[j] : j;
              matrixX[j,ccol] = col[rowidx];
            }
            ++ccol;
          }
        }
      } // end if it was a horizontal oriented spectrum
      else // if it is a vertical oriented spectrum
      {
        matrixX = new MatrixMath.BEMatrix(numcols,numrows);
        int ccol = 0; // current column in the matrix
        for(int i=0;i<prenumcols;i++)
        {
          int colidx = bUseSelectedColumns ? selectedColumns[i] : i;
          Altaxo.Data.INumericColumn col = srctable[colidx] as Altaxo.Data.INumericColumn;
          if(null!=col)
          {
            for(int j=0;j<numrows;j++)
            {
              int rowidx = bUseSelectedRows ? selectedRows[j] : j;
              matrixX[ccol,j] = col[rowidx];
            }
            ++ccol;
          }
        }
      } // if it was a vertical oriented spectrum

      // now do PCA with the matrix
      MatrixMath.REMatrix factors = new MatrixMath.REMatrix(0,0);
      MatrixMath.BEMatrix loads = new MatrixMath.BEMatrix(0,0);
      MatrixMath.BEMatrix residualVariances = new MatrixMath.BEMatrix(0,0);
      MatrixMath.HorizontalVector meanX = new MatrixMath.HorizontalVector(matrixX.Columns);
      // first, center the matrix
      MatrixMath.ColumnsToZeroMean(matrixX,meanX);
      MatrixMath.NIPALS_HO(matrixX,maxNumberOfFactors,1E-9,factors,loads,residualVariances);

      // now we have to create a new table where to place the calculated factors and loads
      // we will do that in a vertical oriented manner, i.e. even if the loads are
      // here in horizontal vectors: in our table they are stored in (vertical) columns
      Altaxo.Data.DataTable table = new Altaxo.Data.DataTable("PCA of " + srctable.Name);

      // Fill the Table
      table.Suspend();

      // first of all store the meanscore
    {
      double meanScore = MatrixMath.LengthOf(meanX);
      MatrixMath.NormalizeRows(meanX);
    
      Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
      for(int i=0;i<factors.Rows;i++)
        col[i] = meanScore;
      table.DataColumns.Add(col,"MeanFactor",Altaxo.Data.ColumnKind.V,0);
    }

      // first store the factors
      for(int i=0;i<factors.Columns;i++)
      {
        Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
        for(int j=0;j<factors.Rows;j++)
          col[j] = factors[j,i];
        
        table.DataColumns.Add(col,"Factor"+i.ToString(),Altaxo.Data.ColumnKind.V,1);
      }

      // now store the mean of the matrix
    {
      Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
      
      for(int j=0;j<meanX.Columns;j++)
        col[j] = meanX[0,j];
      table.DataColumns.Add(col,"MeanLoad",Altaxo.Data.ColumnKind.V,2);
    }

      // now store the loads - careful - they are horizontal in the matrix
      for(int i=0;i<loads.Rows;i++)
      {
        Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
        
        for(int j=0;j<loads.Columns;j++)
          col[j] = loads[i,j];
        
        table.DataColumns.Add(col,"Load"+i.ToString(),Altaxo.Data.ColumnKind.V,3);
      }

      // now store the residual variances, they are vertical in the vector
    {
      Altaxo.Data.DoubleColumn col = new Altaxo.Data.DoubleColumn();
      
      for(int i=0;i<residualVariances.Rows;i++)
        col[i] = residualVariances[i,0];
      table.DataColumns.Add(col,"ResidualVariance",Altaxo.Data.ColumnKind.V,4);
    }

      table.Resume();
      mainDocument.DataTableCollection.Add(table);
      // create a new worksheet without any columns
      Current.ProjectService.CreateNewWorksheet(table);

      return null;
    }
    /// <summary>
    /// This will process the spectra before analysis in multivariate calibration.
    /// </summary>
    /// <param name="preprocessOptions">Contains the information how to preprocess the spectra.</param>
    /// <param name="xOfX"></param>
    /// <param name="matrixX">The matrix of spectra. Each spectrum is a row of the matrix.</param>
    /// <param name="meanX"></param>
    /// <param name="scaleX"></param>
    public static void PreprocessSpectraForAnalysis(
      SpectralPreprocessingOptions preprocessOptions,
      IROVector xOfX,
      IMatrix matrixX,
      out IVector meanX, out IVector scaleX
      )
    {
      // Before we can apply PLS, we have to center the x and y matrices
      meanX = new MatrixMath.HorizontalVector(matrixX.Columns);
      scaleX = new MatrixMath.HorizontalVector(matrixX.Columns);
      //  MatrixMath.HorizontalVector scaleX = new MatrixMath.HorizontalVector(matrixX.Cols);

      preprocessOptions.SetRegionsByIdentification(xOfX);
      preprocessOptions.Process(matrixX,meanX,scaleX);
    }