Ejemplo n.º 1
0
        public void BhapkarTestConstructorTest()
        {
            // Bhapkar, V.P. (1966). A note on the equivalence of two test criteria
            // for hypotheses in categorical data. Journal of the American Statistical
            // Association, 61, 228-235.

            int[,] vision =
            {
                { 1520,  266,  124,  66 },
                {  234, 1512,  432,  78 },
                {  117,  362, 1772, 205 },
                {   36,   82,  179, 492 },
            };

            GeneralConfusionMatrix a = new GeneralConfusionMatrix(vision);

            BhapkarTest target = new BhapkarTest(a);

            Assert.AreEqual(11.97572, target.Statistic, 1e-5);
            Assert.AreEqual(0.00746679746972, target.PValue, 1e-6);
            Assert.AreEqual(3, target.DegreesOfFreedom);

            Assert.IsFalse(double.IsNaN(target.Statistic));
            Assert.IsFalse(double.IsNaN(target.PValue));
        }
Ejemplo n.º 2
0
 public PerfViewModel()
 {
     if (System.ComponentModel.LicenseManager.UsageMode == LicenseUsageMode.Designtime)
     {
         ConfusionMatrix = new GeneralConfusionMatrix(10, new int[100], new int[100]);
         ConfusionView = new ConfusionMatrixView(ConfusionMatrix);
     }
 }
        /// <summary>
        ///   Creates a new multiple table Kappa test.
        /// </summary>
        /// 
        /// <param name="matrices">The contingency tables.</param>
        /// 
        public AverageKappaTest(GeneralConfusionMatrix[] matrices)
        {
            double[] kappas = new double[matrices.Length];
            double[] variances = new double[matrices.Length];

            for (int i = 0; i < matrices.Length; i++)
            {
                kappas[i] = matrices[i].Kappa;
                variances[i] = matrices[i].Variance;
            }

            this.Compute(kappas, variances);
        }
        public void GeneralConfusionMatrixConstructorTest2()
        {
            int[,] matrix = 
            {
                { 4, 0, 0 },
                { 0, 4, 4 },
                { 0, 0, 0 },
            };

            GeneralConfusionMatrix target = new GeneralConfusionMatrix(matrix);


            Assert.AreEqual(3, target.Classes);
            Assert.AreEqual(12, target.Samples);
            Assert.AreEqual(matrix, target.Matrix);
            Assert.AreEqual(0, target.GeometricAgreement);
        }
Ejemplo n.º 5
0
        public void KappaTestConstructorTest()
        {
            // Example from http://vassarstats.net/kappa.html

            // Checked against http://graphpad.com/quickcalcs/Kappa2.cfm     (OK)

            int[,] matrix =
            {
                { 44,  5,  1 },
                {  7, 20,  3 },
                {  9,  5,  6 },
            };

            GeneralConfusionMatrix a = new GeneralConfusionMatrix(matrix);

            Assert.AreEqual(a.RowTotals[0], 50);
            Assert.AreEqual(a.RowTotals[1], 30);
            Assert.AreEqual(a.RowTotals[2], 20);

            Assert.AreEqual(a.ColumnTotals[0], 60);
            Assert.AreEqual(a.ColumnTotals[1], 30);
            Assert.AreEqual(a.ColumnTotals[2], 10);


            Assert.AreEqual(0.4915, a.Kappa, 1e-4);
            Assert.IsFalse(double.IsNaN(a.Kappa));

            double var = a.Variance;
            double var0 = a.VarianceUnderNull;
            double varD = Accord.Statistics.Testing.KappaTest.DeltaMethodKappaVariance(a);

            double se = System.Math.Sqrt(var);
            double se0 = System.Math.Sqrt(var0);
            double seD = System.Math.Sqrt(varD);

            Assert.AreEqual(0.072, a.StandardError, 0.0005);

            // Create a test of the null hypothesis (actual k = 0)
            KappaTest target = new KappaTest(a, hypothesizedKappa: 0);

            // Std. Error is computed differently under the null hypothesis:
            Assert.AreEqual(0.073509316753225237, target.StandardError, 1e-5);
            Assert.IsFalse(double.IsNaN(target.StandardError));
        }
        /// <summary>
        ///   Creates a new Stuart-Maxwell test.
        /// </summary>
        /// 
        /// <param name="matrix">The contingency table to test.</param>
        /// 
        public StuartMaxwellTest(GeneralConfusionMatrix matrix)
        {
            int classes = matrix.Classes;
            int samples = matrix.Samples;

            int df = classes - 1;

            int[] rowMarginals = matrix.RowTotals;
            int[] colMarginals = matrix.ColumnTotals;

            d = new double[df];
            for (int i = 0; i < d.Length; i++)
                d[i] = rowMarginals[i] - colMarginals[i];

            S = new double[df, df];

            for (int i = 0; i < df; i++)
            {
                for (int j = 0; j < df; j++)
                {
                    if (i == j)
                    {
                        double u = (rowMarginals[i] - colMarginals[i]);
                        double pii = matrix.Matrix[i, i];

                        S[i, i] = rowMarginals[i] + colMarginals[i] - 2.0 * pii;
                    }
                    else
                    {
                        double pij = matrix.Matrix[i, j];
                        double pji = matrix.Matrix[j, i];

                        S[i, j] = -(pij + pji);
                    }
                }
            }

            invS = S.PseudoInverse();

            double chiSquare = d.Multiply(invS).InnerProduct(d);

            Compute(chiSquare, df);
        }
Ejemplo n.º 7
0
        public void BowkerTestConstructorTest()
        {
            // Example from Bortz, Lienert and Klaus. Boehnke Verteilungsfreie Methoden in Der Biostatistik, pg 166
            // http://books.google.com.br/books?id=chxDIA-x3WIC&printsec=frontcover&source=gbs_atb#v=onepage&q&f=false

            int[,] matrix =
            {
                { 14,  7,  9 },
                {  5, 26, 19 },
                {  1,  7, 12 },
            };

            GeneralConfusionMatrix a = new GeneralConfusionMatrix(matrix);
            
            BowkerTest target = new BowkerTest(a);

            Assert.AreEqual(12.27, target.Statistic, 1e-2);
            Assert.IsFalse(Double.IsNaN(target.Statistic));
            Assert.AreEqual(3, target.DegreesOfFreedom);
        }
Ejemplo n.º 8
0
        /// <summary>
        ///   Creates a new Bowker test.
        /// </summary>
        /// 
        /// <param name="matrix">The contingency table to test.</param>
        /// 
        public BowkerTest(GeneralConfusionMatrix matrix)
        {
            int classes = matrix.Classes;
            int[,] n = matrix.Matrix;

            double Qb = 0;

            for (int j = 0; j < classes; j++)
            {
                for (int i = 0; i < j; i++)
                {
                    double q = (n[i, j] - n[j, i]);
                    Qb += (q * q) / (n[i, j] + n[j, i]);
                }
            }

            int df = (classes * (classes - 1)) / 2;

            Compute(Qb, df);
        }
Ejemplo n.º 9
0
        private static void PrintMatrix(TextWriter writer, GeneralConfusionMatrix matrix, string[] mostCommonLanguagesArray)
        {
            const int padding = 5;
            var langs = mostCommonLanguagesArray.Select(l => l.Length > 5 ? l.Remove(5) : l).ToArray();
            writer.Write("act->".PadRight(padding));
            foreach (var lang in langs)
            {
                writer.Write(lang.PadRight(padding));
            }

            writer.WriteLine();
            for (int i = 0; i < matrix.Matrix.GetLength(0); i++)
            {
                writer.Write(langs[i].PadRight(padding));
                for (int j = 0; j < matrix.Matrix.GetLength(1); j++)
                {
                    writer.Write(matrix.Matrix[i, j].ToString().PadRight(padding));
                }
                writer.WriteLine();
            }
        }
Ejemplo n.º 10
0
        public void StuartMaxwellTestConstructorTest()
        {
            // Example from http://www.john-uebersax.com/stat/mcnemar.htm#stuart

            int[,] matrix = 
            {
                { 20, 10,  5 },
                {  3, 30, 15 },
                {  0,  5, 40 },
            };

            GeneralConfusionMatrix a = new GeneralConfusionMatrix(matrix);
            
            StuartMaxwellTest target = new StuartMaxwellTest(a);

            Assert.AreEqual(13.76, target.Statistic, 0.01);
            Assert.AreEqual(2, target.DegreesOfFreedom);
            Assert.AreEqual(0.001, target.PValue, 1e-4);

            Assert.IsFalse(double.IsNaN(target.Statistic));
            Assert.IsFalse(double.IsNaN(target.PValue));
        }
        public void GeneralConfusionMatrixConstructorTest()
        {
            int classes = 3;

            int[] expected = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2 };
            int[] predicted = { 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 };

            GeneralConfusionMatrix target = new GeneralConfusionMatrix(classes, expected, predicted);


            Assert.AreEqual(3, target.Classes);
            Assert.AreEqual(12, target.Samples);

            int[,] expectedMatrix = 
            {
                { 4, 0, 0 },
                { 0, 4, 0 },
                { 0, 4, 0 },
            };

            int[,] actualMatrix = target.Matrix;

            Assert.IsTrue(expectedMatrix.IsEqual(actualMatrix));
        }
Ejemplo n.º 12
0
        public void buildModel()
        {
            IGeometryBag        geoBag  = new GeometryBagClass();
            IGeometryCollection geoColl = (IGeometryCollection)geoBag;
            IFeatureCursor      ftCur   = projectArea.Search(null, false);
            IFeature            ftr     = ftCur.NextFeature();

            while (ftr != null)
            {
                geoColl.AddGeometry(ftr.Shape);
                ftr = ftCur.NextFeature();
            }
            dgc = new dataGeneralConfusionMatirx();
            dgc.getXTable(oModel);
            olabels  = dgc.Labels.ToList();
            xTable   = dgc.XTable;
            oClmProp = dgc.GeneralConfusionMatrix.ColumnProportions;
            nCnts    = new double[oClmProp.Length];
            adjustXTable((IGeometry)geoBag);
            gc    = new GeneralConfusionMatrix(xTable);
            kappa = gc.Kappa;
            ste   = gc.StandardError;
            writeXTable();
        }
Ejemplo n.º 13
0
 /// <summary>
 ///   Computes the asymptotic variance for Fleiss's Kappa variance using the formulae
 ///   by (Fleiss et al, 1969) when the underlying Kappa is assumed different from zero.
 /// </summary>
 /// 
 /// <param name="matrix">A <see cref="GeneralConfusionMatrix"/> representing the ratings.</param>
 /// 
 /// <returns>Kappa's variance.</returns>
 /// 
 public static double AsymptoticKappaVariance(GeneralConfusionMatrix matrix)
 {
     double stdDev;
     return AsymptoticKappaVariance(matrix, out stdDev);
 }
Ejemplo n.º 14
0
        /// <summary>
        ///   Computes the asymptotic variance for Fleiss's Kappa variance using the formulae
        ///   by (Fleiss et al, 1969). If <paramref name="nullHypothesis"/> is set to true, the
        ///   method will return the variance under the null hypothesis.
        /// </summary>
        /// 
        /// <param name="matrix">A <see cref="GeneralConfusionMatrix"/> representing the ratings.</param>
        /// <param name="stdDev">Kappa's standard deviation.</param>
        /// <param name="nullHypothesis">True to compute Kappa's variance when the null hypothesis
        /// is true (i.e. that the underlying kappa is zer). False otherwise. Default is false.</param>
        /// 
        /// <returns>Kappa's variance.</returns>
        /// 
        public static double AsymptoticKappaVariance(GeneralConfusionMatrix matrix, out double stdDev,
            bool nullHypothesis = false)
        {
            double n = matrix.Samples;
            double k = matrix.Kappa;

            double[,] p = matrix.ProportionMatrix;
            double[] colMarginal = matrix.ColumnProportions;
            double[] rowMarginal = matrix.RowProportions;

            double Pe = 0;
            for (int i = 0; i < rowMarginal.Length; i++)
                Pe += rowMarginal[i] * colMarginal[i];

            double variance;


            if (!nullHypothesis)
            {
                // References: Statistical Methods for Rates and Proportions, pg 606.
                // Fleiss calculations on page 607 are done with a rounded Kappa of:
                //
                //   k = 0.68


                // Compute A (eq. 18.16)
                double A = 0;
                for (int i = 0; i < rowMarginal.Length; i++)
                {
                    double pii = p[i, i];
                    double pid = rowMarginal[i];
                    double pdi = colMarginal[i];
                    A += pii * square(1.0 - (pid + pdi) * (1 - k));
                }

                // Compute B (eq. 18.17)
                double sum = 0;
                for (int i = 0; i < colMarginal.Length; i++)
                {
                    for (int j = 0; j < rowMarginal.Length; j++)
                    {
                        if (i != j)
                        {
                            double pij = p[i, j];
                            double pdi = colMarginal[i];
                            double pjd = rowMarginal[j];
                            sum += pij * square(pdi + pjd);
                        }
                    }
                }

                double B = square(1.0 - k) * sum;


                // Compute C
                double C = square(k - Pe * (1 - k));

                // Compute variance and standard error using A, B and C
                variance = (A + B - C) / (square(1.0 - Pe) * n);
                stdDev = Math.Sqrt(A + B - C) / ((1.0 - Pe) * Math.Sqrt(n));
            }
            else
            {

                double sum = 0;
                for (int i = 0; i < rowMarginal.Length; i++)
                    sum += colMarginal[i] * rowMarginal[i] * (colMarginal[i] + rowMarginal[i]);

                variance = (1.0 / (square(1.0 - Pe) * n)) * (Pe + Pe * Pe - sum);
                stdDev = (1.0 / ((1.0 - Pe) * Math.Sqrt(n))) * Math.Sqrt(Pe + Pe * Pe - sum);
            }

            System.Diagnostics.Debug.Assert(!(Math.Abs(variance - stdDev * stdDev) > 1e-10 * variance));

            return variance;
        }
Ejemplo n.º 15
0
 /// <summary>
 ///   Compute Cohen's Kappa variance using the large sample approximation
 ///   given by Congalton, which is common in the remote sensing literature.
 /// </summary>
 /// 
 /// <param name="matrix">A <see cref="GeneralConfusionMatrix"/> representing the ratings.</param>
 /// 
 /// <returns>Kappa's variance.</returns>
 /// 
 public static double DeltaMethodKappaVariance(GeneralConfusionMatrix matrix)
 {
     double stdDev = 0;
     return DeltaMethodKappaVariance(matrix, out stdDev);
 }
Ejemplo n.º 16
0
        /// <summary>
        ///   Compute Cohen's Kappa variance using the large sample approximation
        ///   given by Congalton, which is common in the remote sensing literature.
        /// </summary>
        /// 
        /// <param name="matrix">A <see cref="GeneralConfusionMatrix"/> representing the ratings.</param>
        /// <param name="stdDev">Kappa's standard deviation.</param>
        /// 
        /// <returns>Kappa's variance.</returns>
        /// 
        public static double DeltaMethodKappaVariance(GeneralConfusionMatrix matrix, out double stdDev)
        {
            int n = matrix.Samples;
            double sum;

            double θ1 = (1.0 / n) * matrix.Diagonal.Sum(); // observed agreement, po

            sum = 0;
            for (int i = 0; i < matrix.RowTotals.Length; i++)
                sum += matrix.RowTotals[i] * matrix.ColumnTotals[i];
            double θ2 = (1.0 / (n * n)) * sum; // expected agreement, pe


            sum = 0;
            for (int i = 0; i < matrix.RowTotals.Length; i++)
                sum += matrix.Diagonal[i] * (matrix.RowTotals[i] + matrix.ColumnTotals[i]);
            double θ3 = (1.0 / (n * n)) * sum;


            sum = 0;
            for (int i = 0; i < matrix.RowTotals.Length; i++)
                for (int j = 0; j < matrix.ColumnTotals.Length; j++)
                    sum += matrix.Matrix[i, j] * Math.Pow(matrix.RowTotals[i] + matrix.ColumnTotals[j], 2);
            double θ4 = (1.0 / (n * n * n)) * sum;

            double A = (θ1 * (1 - θ1)) / ((1 - θ2) * (1 - θ2));
            double B = (2 * (1 - θ1) * (2 * θ1 * θ2 - θ3)) / ((1 - θ2) * (1 - θ2) * (1 - θ2));
            double C = ((1 - θ1) * (1 - θ1) * (θ4 - 4 * θ2 * θ2)) / ((1 - θ2) * (1 - θ2) * (1 - θ2) * (1 - θ2));

            double var = (1.0 / n) * (A + B + C);
            stdDev = Math.Sqrt(var);

            return var;
        }
        public void ChiSquareTest2()
        {
            int[,] matrix =
            {
                { 296, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
                {   0, 293, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1 },
                {   1, 0, 274, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
                {   1, 0, 0, 278, 0, 1, 0, 0, 7, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 2 },
                {   0, 1, 0, 0, 290, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 7 },
                {   0, 4, 1, 7, 2, 263, 0, 0, 0, 2, 0, 3, 0, 0, 0, 1, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 4 },
                {   5, 7, 1, 29, 1, 20, 0, 0, 10, 10, 49, 28, 1, 6, 0, 4, 1, 29, 0, 21, 15, 9, 3, 4, 0, 32, 15 },
                {   0, 7, 0, 23, 9, 37, 0, 0, 0, 19, 34, 4, 8, 2, 0, 1, 6, 13, 0, 13, 53, 8, 6, 1, 0, 46, 10 },
                {   0, 0, 0, 0, 0, 0, 0, 0, 298, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0 },
                {   2, 1, 0, 2, 2, 0, 0, 0, 11, 250, 0, 0, 5, 2, 0, 3, 4, 0, 0, 1, 1, 0, 0, 5, 0, 11, 0 },
                {   1, 3, 0, 0, 2, 3, 0, 0, 0, 1, 251, 4, 0, 0, 0, 0, 0, 1, 2, 2, 1, 11, 10, 0, 0, 6, 2 },
                {   0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 2, 291, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 },
                {   0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 278, 10, 0, 0, 5, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0 },
                {   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 279, 0, 0, 3, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0 },
                {   0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 292, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 1 },
                {   0, 0, 2, 3, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 289, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0 },
                {   0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 1, 3, 0, 0, 289, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 },
                {   0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 2, 0, 0, 0, 0, 0, 276, 0, 2, 10, 0, 0, 0, 0, 4, 1 },
                {   4, 0, 0, 0, 7, 2, 0, 0, 1, 2, 0, 0, 3, 0, 2, 0, 0, 0, 274, 0, 0, 0, 0, 2, 0, 2, 1 },
                {   0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 1, 0, 0, 0, 0, 8, 0, 0, 0, 262, 0, 0, 2, 0, 0, 1, 1 },
                {   0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 10, 0, 2, 278, 2, 0, 0, 0, 3, 0 },
                {   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 1, 0, 0, 0, 0, 0, 4, 273, 4, 0, 0, 2, 1 },
                {   0, 1, 1, 0, 1, 0, 0, 0, 0, 3, 7, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 2, 277, 0, 0, 2, 1 },
                {   0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 7, 5, 0, 6, 4, 0, 0, 0, 1, 0, 0, 259, 0, 10, 0 },
                {   14, 13, 0, 14, 0, 28, 0, 0, 6, 94, 10, 2, 1, 10, 0, 8, 7, 0, 0, 16, 0, 16, 24, 5, 0, 32, 0 },
                {   0, 2, 1, 9, 0, 1, 0, 0, 0, 22, 7, 3, 11, 0, 1, 5, 1, 6, 0, 2, 4, 1, 2, 7, 0, 214, 1 },
                {   0, 1, 13, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 3, 1, 1, 0, 0, 0, 0, 0, 272 },
            };

            GeneralConfusionMatrix target = new GeneralConfusionMatrix(matrix);

            double actual = target.ChiSquare;
            Assert.IsTrue(Double.IsNaN(actual));

            Assert.AreEqual(0, target.GeometricAgreement);
            Assert.AreEqual(matrix.Diagonal().Sum() / (double)target.Samples, target.OverallAgreement);
        }
Ejemplo n.º 18
0
 /// <summary>
 ///   Creates a new Kappa test.
 /// </summary>
 /// 
 /// <param name="matrix">The contingency table to test.</param>
 /// <param name="alternate">The alternative hypothesis (research hypothesis) to test. If the
 /// hypothesized kappa is left unspecified, a one-tailed test will be used. Otherwise, the 
 /// default is to use a two-sided test.</param>
 /// <param name="hypothesizedKappa">The hypothesized value for the Kappa statistic. If the test
 /// is being used to assert independency between two raters (i.e. testing the null hypothesis
 /// that the underlying Kappa is zero), then the <see cref="AsymptoticKappaVariance(GeneralConfusionMatrix)">
 /// standard error will be computed with the null hypothesis parameter set to true</see>.</param>
 /// 
 public KappaTest(GeneralConfusionMatrix matrix, double hypothesizedKappa,
     OneSampleHypothesis alternate = OneSampleHypothesis.ValueIsDifferentFromHypothesis)
 {
     if (hypothesizedKappa == 0)
     {
         // Use the null hypothesis variance
         Compute(matrix.Kappa, hypothesizedKappa, matrix.StandardErrorUnderNull, alternate);
         Variance = matrix.VarianceUnderNull;
     }
     else
     {
         // Use the default variance
         Compute(matrix.Kappa, hypothesizedKappa, matrix.StandardError, alternate);
         Variance = matrix.Variance;
     }
 }
        public void TotalTest()
        {
            int[,] matrix = 
            {
                { 1, 2, 3 },
                { 4, 5, 6 },
                { 7, 8, 9 },
            };

            GeneralConfusionMatrix target = new GeneralConfusionMatrix(matrix);

            int[] colTotals = target.ColumnTotals;
            int[] rowTotals = target.RowTotals;

            Assert.AreEqual(1 + 2 + 3, rowTotals[0]);
            Assert.AreEqual(4 + 5 + 6, rowTotals[1]);
            Assert.AreEqual(7 + 8 + 9, rowTotals[2]);

            Assert.AreEqual(1 + 4 + 7, colTotals[0]);
            Assert.AreEqual(2 + 5 + 8, colTotals[1]);
            Assert.AreEqual(3 + 6 + 9, colTotals[2]);
        }
Ejemplo n.º 20
0
 public PerfViewModel(GeneralConfusionMatrix matrix)
 {
     ConfusionMatrix = matrix;
     ConfusionView = new ConfusionMatrixView(matrix);
 }
        public void GeometricAgreementTest()
        {
            int[,] matrix = 
            {
                { 462,	241 },
                { 28,	 59 },
            };

            GeneralConfusionMatrix target = new GeneralConfusionMatrix(matrix);

            double actual = target.GeometricAgreement;
            double expected = Math.Sqrt(462 * 59);
            Assert.AreEqual(expected, actual, 1e-10);
            Assert.IsFalse(Double.IsNaN(actual));
        }
Ejemplo n.º 22
0
        public void KappaTestConstructorTest5()
        {
            // Example from Statistical Methods for Rates and Proportions
            // for kappa variance under the null hypothesis

            // Checked against Statistical Methods for Rates and Proportions (OK)


            int[,] matrix = // (pg 599)
            {
                { 75,  1, 4  },
                {  5,  4, 1  },
                {  0,  0, 10 },
            };

            GeneralConfusionMatrix a = new GeneralConfusionMatrix(matrix);

            Assert.AreEqual(100, a.Samples);

            Assert.AreEqual(80, a.RowTotals[0]);
            Assert.AreEqual(10, a.RowTotals[1]);
            Assert.AreEqual(10, a.RowTotals[2]);

            Assert.AreEqual(80, a.ColumnTotals[0]);
            Assert.AreEqual(5, a.ColumnTotals[1]);
            Assert.AreEqual(15, a.ColumnTotals[2]);

            double[,] proportions = // (pg 599)
            {
                { 0.75, 0.01, 0.04 },
                { 0.05, 0.04, 0.01 },
                { 0.00, 0.00, 0.10 },
            };

            Assert.IsTrue(proportions.IsEqual(a.ProportionMatrix));

            // Test under null hypothesis
            KappaTest target = new KappaTest(a, hypothesizedKappa: 0,
                alternate: OneSampleHypothesis.ValueIsGreaterThanHypothesis);

            Assert.AreEqual(0.68, target.EstimatedValue, 0.01); // pg 605
            Assert.AreEqual(a.Kappa, target.EstimatedValue);
            Assert.IsFalse(double.IsNaN(target.EstimatedValue));

            Assert.AreEqual(0.076, target.StandardError, 0.001);
            Assert.IsFalse(double.IsNaN(target.StandardError));

            Assert.AreEqual(8.95, target.Statistic, 0.08);

            Assert.IsTrue(target.Significant);
        }
 public void buildModel()
 {
     IGeometryBag geoBag = new GeometryBagClass();
     IGeometryCollection geoColl = (IGeometryCollection)geoBag;
     IFeatureCursor ftCur = projectArea.Search(null, false);
     IFeature ftr = ftCur.NextFeature();
     while (ftr != null)
     {
         geoColl.AddGeometry(ftr.Shape);
         ftr = ftCur.NextFeature();
     }
     dgc = new dataGeneralConfusionMatirx();
     dgc.getXTable(oModel);
     olabels = dgc.Labels.ToList();
     xTable = dgc.XTable;
     oClmProp = dgc.GeneralConfusionMatrix.ColumnProportions;
     nCnts = new double[oClmProp.Length];
     adjustXTable((IGeometry)geoBag);
     gc = new GeneralConfusionMatrix(xTable);
     kappa = gc.Kappa;
     ste = gc.StandardError;
     writeXTable();
 }
        public void ChiSquareTest()
        {
            int[,] matrix =
            {
                {  10,      9,      5,      7,      8     },
                {   1,      2,      0,      1,      2     },
                {   0,      0,      1,      0,      1     },
                {   1,      0,      0,      3,      0     },
                {   0,      2,      0,      0,      2     },
            };

            GeneralConfusionMatrix target = new GeneralConfusionMatrix(matrix);

            double actual = target.ChiSquare;

            Assert.AreEqual(19.43, actual, 0.01);
            Assert.IsFalse(Double.IsNaN(actual));
        }
Ejemplo n.º 25
0
        /// <summary>
        ///   Creates a new Two-Table Kappa test.
        /// </summary>
        /// 
        /// <param name="matrix1">The first contingency table to test.</param>
        /// <param name="matrix2">The second contingency table to test.</param>
        /// <param name="hypothesizedDifference">The hypothesized difference between the two Kappa values.</param>
        /// <param name="alternate">The alternative hypothesis (research hypothesis) to test.</param>
        /// 
        public TwoMatrixKappaTest(GeneralConfusionMatrix matrix1, GeneralConfusionMatrix matrix2, double hypothesizedDifference = 0,
            TwoSampleHypothesis alternate = TwoSampleHypothesis.ValuesAreDifferent)
        {
            this.EstimatedValue1 = matrix1.Kappa;
            this.EstimatedValue2 = matrix2.Kappa;

            this.Variance1 = matrix1.Variance;
            this.Variance2 = matrix2.Variance;

            this.OverallVariance = Variance1 + Variance2;

            double diff = Math.Abs(EstimatedValue1 - EstimatedValue2);
            double stdError = Math.Sqrt(OverallVariance);

            Compute(diff, hypothesizedDifference, stdError, alternate);
        }
Ejemplo n.º 26
0
        /// <summary>
        ///   Creates a new Two-Table Mean Kappa test.
        /// </summary>
        /// 
        /// <param name="matrices1">The first group of contingency tables.</param>
        /// <param name="matrices2">The second  group of contingency tables.</param>
        /// <param name="assumeEqualVariances">True to assume equal variances, false otherwise. Default is true.</param>
        /// <param name="hypothesizedDifference">The hypothesized difference between the two average Kappa values.</param>
        /// <param name="alternate">The alternative hypothesis (research hypothesis) to test.</param>
        /// 
        public TwoAverageKappaTest(GeneralConfusionMatrix[] matrices1, GeneralConfusionMatrix[] matrices2,
            double hypothesizedDifference = 0, bool assumeEqualVariances = true,
            TwoSampleHypothesis alternate = TwoSampleHypothesis.ValuesAreDifferent)
        {

            double[] kappas1 = new double[matrices1.Length];
            for (int i = 0; i < matrices1.Length; i++)
                kappas1[i] = matrices1[i].Kappa;

            double[] kappas2 = new double[matrices1.Length];
            for (int i = 0; i < matrices2.Length; i++)
                kappas2[i] = matrices2[i].Kappa;

            double meanKappa1 = kappas1.Mean();
            double meanKappa2 = kappas2.Mean();

            Variance1 = kappas1.Variance(meanKappa1);
            Variance2 = kappas2.Variance(meanKappa2);

            int kappaSamples1 = matrices1.Length;
            int kappaSamples2 = matrices2.Length;

            base.Compute(
               meanKappa1, Variance1, kappaSamples1,
               meanKappa2, Variance2, kappaSamples2,
               hypothesizedDifference, assumeEqualVariances, alternate);
        }
Ejemplo n.º 27
0
        public void KappaTestConstructorTest2()
        {
            // Example from: M. Reichenheim (2004). Confidence intervals for the
            // kappa statistic. The Stata Journal (2004) 4, Number 4, pp. 421–428.
            // http://www.stata-journal.com/sjpdf.html?articlenum=st0076

            int[,] matrix = // (pg 599)
            {
                { 48,  12 },
                { 16, 160 },
            };

            GeneralConfusionMatrix a = new GeneralConfusionMatrix(matrix);

            // Reichenheim's paper shows:
            // Agreement | Expected Agreement | Kappa  | Std. Error |   Z
            //   88.14%  |       61.25%       | 0.6938 |   0.0650   | 10.67

            Assert.AreEqual(88.14, a.OverallAgreement * 100, 1e-2);
            Assert.AreEqual(61.25, a.ChanceAgreement * 100, 1e-2);
            Assert.AreEqual(0.6938, a.Kappa, 1e-4);
            Assert.AreEqual(0.0650, a.StandardErrorUnderNull, 1e-4);

            KappaTest target = new KappaTest(a);

            Assert.AreEqual(OneSampleHypothesis.ValueIsGreaterThanHypothesis, target.Hypothesis);

            Assert.AreEqual(10.67, target.Statistic, 1e-3);
            Assert.AreEqual(7.0849733798130419E-27, target.PValue);
        }
        public void KappaVarianceTest3()
        {
            // Example from J. L. Fleiss, J. Cohen, B. S. Everitt, "Large sample
            //  standard errors of kappa and weighted kappa" Psychological Bulletin (1969)
            //  Volume: 72, Issue: 5, American Psychological Association, Pages: 323-327

            // This was the paper which presented the finally correct
            // large sample variance for Kappa after so many attempts.


            double[,] matrix =
            {
                { 0.53,  0.05,  0.02 },
                { 0.11,  0.14,  0.05 },
                { 0.01,  0.06,  0.03 },
            };

            GeneralConfusionMatrix a = new GeneralConfusionMatrix(matrix, 200);

            Assert.AreEqual(a.RowProportions[0], .60, 1e-10);
            Assert.AreEqual(a.RowProportions[1], .30, 1e-10);
            Assert.AreEqual(a.RowProportions[2], .10, 1e-10);

            Assert.AreEqual(a.ColumnProportions[0], .65, 1e-10);
            Assert.AreEqual(a.ColumnProportions[1], .25, 1e-10);
            Assert.AreEqual(a.ColumnProportions[2], .10, 1e-10);


            Assert.AreEqual(0.429, a.Kappa, 1e-3);
            Assert.IsFalse(double.IsNaN(a.Kappa));


            Assert.AreEqual(0.002885, a.Variance, 1e-6);
            Assert.AreEqual(0.003082, a.VarianceUnderNull, 1e-6);


            Assert.IsFalse(double.IsNaN(a.Variance));
            Assert.IsFalse(double.IsNaN(a.VarianceUnderNull));
        }
Ejemplo n.º 29
0
 /// <summary>
 ///   Creates a new Kappa test.
 /// </summary>
 /// 
 /// <param name="matrix">The contingency table to test.</param>
 /// <param name="alternate">The alternative hypothesis (research hypothesis) to test. If the
 /// hypothesized kappa is left unspecified, a one-tailed test will be used. Otherwise, the 
 /// default is to use a two-sided test.</param>
 /// 
 public KappaTest(GeneralConfusionMatrix matrix,
     OneSampleHypothesis alternate = OneSampleHypothesis.ValueIsGreaterThanHypothesis)
     : this(matrix, 0, alternate)
 {
 }
Ejemplo n.º 30
0
        public void KappaTestConstructorTest4()
        {
            // Example from Statistical Methods for Rates and Proportions

            // Checked against http://graphpad.com/quickcalcs/Kappa2.cfm     (OK)
            // Checked against Statistical Methods for Rates and Proportions (OK)
            // Checked against http://vassarstats.net/kappa.html           (FAIL)

            int[,] matrix = // (pg 599)
            {
                { 75,  1, 4  },
                {  5,  4, 1  },
                {  0,  0, 10 },
            };

            GeneralConfusionMatrix a = new GeneralConfusionMatrix(matrix);

            Assert.AreEqual(100, a.Samples);

            Assert.AreEqual(80, a.RowTotals[0]);
            Assert.AreEqual(10, a.RowTotals[1]);
            Assert.AreEqual(10, a.RowTotals[2]);

            Assert.AreEqual(80, a.ColumnTotals[0]);
            Assert.AreEqual(5, a.ColumnTotals[1]);
            Assert.AreEqual(15, a.ColumnTotals[2]);

            double[,] proportions = // (pg 599)
            {
                { 0.75, 0.01, 0.04 },
                { 0.05, 0.04, 0.01 },
                { 0.00, 0.00, 0.10 },
            };

            Assert.IsTrue(proportions.IsEqual(a.ProportionMatrix));


            double expectedVar = a.Variance;

            // Test against non-null hypothesis
            KappaTest target = new KappaTest(a, hypothesizedKappa: 0.8);

            // Fleiss   reports 0.68  (page 606)
            // Graphpad reports 0.676
            Assert.AreEqual(0.68, target.EstimatedValue, 0.01);
            Assert.AreEqual(a.Kappa, target.EstimatedValue);
            Assert.IsFalse(double.IsNaN(target.EstimatedValue));

            // Fleiss   reports 0.087 (page 607)
            // Graphpad reports 0.088
            Assert.AreEqual(0.087, target.StandardError, 0.001);
            Assert.IsFalse(double.IsNaN(target.StandardError));

            Assert.AreEqual(-1.38, target.Statistic, 0.029);
            Assert.AreEqual(0.1589, target.PValue, 0.0001);

            Assert.IsFalse(target.Significant);
        }
        public void KappaTest()
        {
            int[,] matrix =
            {
                { 29,  6,  5 },
                {  8, 20,  7 },
                {  1,  2, 22 },
            };

            GeneralConfusionMatrix target = new GeneralConfusionMatrix(matrix);


            Assert.AreEqual(3, target.Classes);
            Assert.AreEqual(100, target.Samples);

            Assert.AreEqual(0.563, target.Kappa, 1e-3);
            Assert.AreEqual(23.367749664961245, target.GeometricAgreement);
        }