Inheritance: ActivationNetwork
Ejemplo n.º 1
2
        public void ExampleTest1()
        {
            Accord.Math.Tools.SetupGenerator(0);

            // We'll use a simple XOR function as input. 

            double[][] inputs =
            { 
                new double[] { 0, 0 }, // 0 xor 0
                new double[] { 0, 1 }, // 0 xor 1
                new double[] { 1, 0 }, // 1 xor 0
                new double[] { 1, 1 }, // 1 xor 1
            };

            // XOR output, corresponding to the input.
            double[][] outputs = 
            {
                new double[] { 0 }, // 0 xor 0 = 0
                new double[] { 1 }, // 0 xor 1 = 1
                new double[] { 1 }, // 1 xor 0 = 1
                new double[] { 0 }, // 1 xor 1 = 0
            };

            // Setup the deep belief network (2 inputs, 3 hidden, 1 output)
            DeepBeliefNetwork network = new DeepBeliefNetwork(2, 3, 1);

            // Initialize the network with Gaussian weights
            new GaussianWeights(network, 0.1).Randomize();

            // Update the visible layer with the new weights
            network.UpdateVisibleWeights();


            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum = 0.5,
                    Decay = 0.001,
                }
            };



            // Unsupervised learning on each hidden layer, except for the output.
            for (int i = 0; i < network.Layers.Length - 1; i++)
            {
                teacher.LayerIndex = i;

                // Compute the learning data with should be used
                var layerInput = teacher.GetLayerInput(inputs);

                // Train the layer iteratively
                for (int j = 0; j < 5000; j++)
                    teacher.RunEpoch(layerInput);
            }



            // Supervised learning on entire network, to provide output classification.
            var backpropagation = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < 5000; i++)
                backpropagation.RunEpoch(inputs, outputs);


            // Test the resulting accuracy.
            int correct = 0;
            for (int i = 0; i < inputs.Length; i++)
            {
                double[] outputValues = network.Compute(inputs[i]);
                double outputResult = outputValues.First() >= 0.5 ? 1 : 0;

                if (outputResult == outputs[i].First())
                {
                    correct++;
                }
            }

            Assert.AreEqual(4, correct);
        }
Ejemplo n.º 2
0
 public override void Initialize()
 {
     _Network = new DeepBeliefNetwork(Length + 1, new int[] { _MiddleCount, FrameOut.Length + 1 });	// 斉次座標
     new GaussianWeights(_Network).Randomize();
     _Network.UpdateVisibleWeights();
     InitializeTeacher();
 }
Ejemplo n.º 3
0
        public void Train(double[][] i, double[][] o = null, int outputLength = 10, int hiddenLayer = -1)
        {
            if (n == null)
            {
                if (File.Exists(p)) n = DeepBeliefNetwork.Load(p);
                else
                {
                    outputLength = (o == null) ? outputLength : o[0].Length;
                    hiddenLayer = (hiddenLayer == -1) ? (int)Math.Log(i[0].Length, outputLength) : hiddenLayer;
                    List<int> layers = new List<int>();
                    for (int j = 0; j < hiddenLayer; j++) layers.Add(i[0].Length);
                    layers.Add(outputLength);
                    n = new DeepBeliefNetwork(new BernoulliFunction(), i[0].Length, layers.ToArray());
                    new GaussianWeights(n).Randomize();
                }
            }

            dynamic t;
            if (o == null)
            {
                t = new DeepBeliefNetworkLearning(n) { Algorithm = (h, v, j) => new ContrastiveDivergenceLearning(h, v), LayerIndex = n.Machines.Count - 1, };
                while (true) e = t.RunEpoch(t.GetLayerInput(i));
            }
            else
            {
                t = new DeepNeuralNetworkLearning(n) { Algorithm = (ann, j) => new ParallelResilientBackpropagationLearning(ann), LayerIndex = n.Machines.Count - 1, };
                while (true) e = t.RunEpoch(t.GetLayerInput(i), o);
            }
        }
Ejemplo n.º 4
0
        public TwitterCheck()
        {
            var settings = ConfigurationManager.AppSettings;

            var blackWords = new List<string>();
            var whiteWords = new List<string>();
            for (int i = 1; i <= SettingMax; i++)
            {
                string black = settings["twitter.blackwords." + i];
                if (black == null) continue;
                foreach (var elem in black.Split(','))
                {
                    blackWords.Add(elem);
                }
                string white = settings["twitter.whitewords." + i];
                if (white == null) continue;
                foreach (var elem in white.Split(','))
                {
                    whiteWords.Add(elem);
                }
            }
            BlackWords = blackWords.AsReadOnly();
            WhiteWords = whiteWords.AsReadOnly();
            Log.Trace.TraceEvent(TraceEventType.Information, 0,
                "{0} black words loaded", BlackWords.Count);
            Log.Trace.TraceEvent(TraceEventType.Information, 0,
               "{0} white words loaded", WhiteWords.Count);

            var replaceList = new List<KeyValuePair<string, string>>();
            for (int i = 1; i <= SettingMax; i++)
            {
                string str = settings["twitter.replace." + i];
                if (str == null) continue;
                foreach (var pair in str.Split(','))
                {
                    string[] kv = pair.Split('=');
                    replaceList.Add(new KeyValuePair<string, string>(kv[0], kv[1]));
                }
            }
            ReplaceList = replaceList.AsReadOnly();
            Log.Trace.TraceEvent(TraceEventType.Information, 0,
                "{0} replace entries loaded", ReplaceList.Count);

            try
            {
                dlNetwork = DollsLib.Learning.DataManager.LoadDeepLearning(
                    SettingManager.Settings.Twitter.DlNetTrainError);
            }
            catch (Exception)
            {
                Log.Trace.TraceEvent(TraceEventType.Warning, 0,
                "DlNwtwork {0} load failed", SettingManager.Settings.Twitter.DlNetTrainError);
            }
        }
Ejemplo n.º 5
0
        /// <summary>
        ///   Creates a Mixed-Bernoulli network.
        /// </summary>
        ///
        /// <param name="visible">The <see cref="IStochasticFunction"/> to be used in the first visible layer.</param>
        /// <param name="hidden">The <see cref="IStochasticFunction"/> to be used in all other layers.</param>
        ///
        /// <param name="inputsCount">The number of inputs for the network.</param>
        /// <param name="hiddenNeurons">The number of hidden neurons in each layer.</param>
        ///
        public static DeepBeliefNetwork CreateMixedNetwork(IStochasticFunction visible,
                                                           IStochasticFunction hidden, int inputsCount, params int[] hiddenNeurons)
        {
            DeepBeliefNetwork network = new DeepBeliefNetwork(hidden, inputsCount, hiddenNeurons);

            foreach (StochasticNeuron neuron in network.machines[0].Visible.Neurons)
            {
                neuron.ActivationFunction = visible;
            }

            return(network);
        }
Ejemplo n.º 6
0
        /// <summary>
        ///   Creates a Gaussian-Bernoulli network.
        /// </summary>
        ///
        /// <param name="inputsCount">The number of inputs for the network.</param>
        /// <param name="hiddenNeurons">The number of hidden neurons in each layer.</param>
        ///
        public static DeepBeliefNetwork CreateGaussianBernoulli(int inputsCount, params int[] hiddenNeurons)
        {
            DeepBeliefNetwork network = new DeepBeliefNetwork(inputsCount, hiddenNeurons);

            GaussianFunction gaussian = new GaussianFunction();

            foreach (StochasticNeuron neuron in network.machines[0].Visible.Neurons)
            {
                neuron.ActivationFunction = gaussian;
            }

            return(network);
        }
Ejemplo n.º 7
0
        public MainViewModel()
        {
            // Create settings for Optidigits dataset
            Network = new DeepBeliefNetwork(new BernoulliFunction(), 1024, 50, 10);

            Database = new Optdigits()
            {
                IsNormalized = false
            };

            new GaussianWeights(Network).Randomize();
            Network.UpdateVisibleWeights();
            

            Learn = new LearnViewModel(this);
            Use = new UseViewModel(this);
            Dream = new DreamViewModel(this);
            Discover = new DiscoverViewModel(this);

            NewLayerNeurons = 10;
        }
Ejemplo n.º 8
0
        /// <summary>
        ///   Creates a Mixed-Bernoulli network.
        /// </summary>
        /// 
        /// <param name="visible">The <see cref="IStochasticFunction"/> to be used in the first visible layer.</param>
        /// <param name="hidden">The <see cref="IStochasticFunction"/> to be used in all other layers.</param>
        /// 
        /// <param name="inputsCount">The number of inputs for the network.</param>
        /// <param name="hiddenNeurons">The number of hidden neurons in each layer.</param>
        /// 
        public static DeepBeliefNetwork CreateMixedNetwork(IStochasticFunction visible,
            IStochasticFunction hidden, int inputsCount, params int[] hiddenNeurons)
        {
            DeepBeliefNetwork network = new DeepBeliefNetwork(hidden, inputsCount, hiddenNeurons);

            foreach (StochasticNeuron neuron in network.machines[0].Visible.Neurons)
                neuron.ActivationFunction = visible;

            return network;
        }
Ejemplo n.º 9
0
        /// <summary>
        ///   Creates a Gaussian-Bernoulli network.
        /// </summary>
        /// 
        /// <param name="inputsCount">The number of inputs for the network.</param>
        /// <param name="hiddenNeurons">The number of hidden neurons in each layer.</param>
        /// 
        public static DeepBeliefNetwork CreateGaussianBernoulli(int inputsCount, params int[] hiddenNeurons)
        {
            DeepBeliefNetwork network = new DeepBeliefNetwork(inputsCount, hiddenNeurons);

            GaussianFunction gaussian = new GaussianFunction();
            foreach (StochasticNeuron neuron in network.machines[0].Visible.Neurons)
                neuron.ActivationFunction = gaussian;

            return network;
        }
 /// <summary>
 ///   Creates a new <see cref="DeepBeliefNetworkLearning"/> algorithm.
 /// </summary>
 /// 
 /// <param name="network">The network to be trained.</param>
 /// 
 public DeepNeuralNetworkLearning(DeepBeliefNetwork network)
 {
     this.network = network;
 }
Ejemplo n.º 11
0
        private static DeepBeliefNetwork createNetwork(double[][] inputs)
        {
            DeepBeliefNetwork network = new DeepBeliefNetwork(6, 2, 1);

            network.Machines[0].Hidden.Neurons[0].Weights[0] = 0.00461421;
            network.Machines[0].Hidden.Neurons[0].Weights[1] = 0.04337112;
            network.Machines[0].Hidden.Neurons[0].Weights[2] = -0.10839599;
            network.Machines[0].Hidden.Neurons[0].Weights[3] = -0.06234004;
            network.Machines[0].Hidden.Neurons[0].Weights[4] = -0.03017057;
            network.Machines[0].Hidden.Neurons[0].Weights[5] = 0.09520391;
            network.Machines[0].Hidden.Neurons[0].Threshold = 0;

            network.Machines[0].Hidden.Neurons[1].Weights[0] = 0.08263872;
            network.Machines[0].Hidden.Neurons[1].Weights[1] = -0.118437;
            network.Machines[0].Hidden.Neurons[1].Weights[2] = -0.21710971;
            network.Machines[0].Hidden.Neurons[1].Weights[3] = 0.02332903;
            network.Machines[0].Hidden.Neurons[1].Weights[4] = 0.00953116;
            network.Machines[0].Hidden.Neurons[1].Weights[5] = 0.09870652;
            network.Machines[0].Hidden.Neurons[1].Threshold = 0;

            network.Machines[0].Visible.Neurons[0].Threshold = 0;
            network.Machines[0].Visible.Neurons[1].Threshold = 0;
            network.Machines[0].Visible.Neurons[2].Threshold = 0;
            network.Machines[0].Visible.Neurons[3].Threshold = 0;
            network.Machines[0].Visible.Neurons[4].Threshold = 0;
            network.Machines[0].Visible.Neurons[5].Threshold = 0;

            network.UpdateVisibleWeights();


            DeepBeliefNetworkLearning target = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
            };

            for (int layer = 0; layer < 2; layer++)
            {

                target.LayerIndex = layer;

                double[][] layerInputs = target.GetLayerInput(inputs);

                int iterations = 5000;
                double[] errors = new double[iterations];
                for (int i = 0; i < iterations; i++)
                    errors[i] = target.RunEpoch(layerInputs);
            }

            return network;
        }
Ejemplo n.º 12
0
        public void ConstructorTest()
        {
            DeepBeliefNetwork network = new DeepBeliefNetwork(6, 2, 1);

            Assert.AreEqual(2, network.Machines.Count);
            Assert.AreEqual(6, network.InputsCount);
            Assert.AreEqual(1, network.OutputCount);
            Assert.AreEqual(2, network.Machines[0].Hidden.Neurons.Length);
            Assert.AreEqual(1, network.Machines[1].Hidden.Neurons.Length);
            Assert.AreEqual(6, network.Machines[0].Visible.Neurons.Length);
            Assert.AreEqual(2, network.Machines[1].Visible.Neurons.Length);
        }
Ejemplo n.º 13
0
        public void PushPopTest()
        {
            DeepBeliefNetwork network = new DeepBeliefNetwork(6, 2, 9);

            Assert.AreEqual(2, network.Machines.Count);
            Assert.AreEqual(6, network.InputsCount);
            Assert.AreEqual(9, network.OutputCount);
            Assert.AreEqual(2, network.Machines[0].Hidden.Neurons.Length);
            Assert.AreEqual(9, network.Machines[1].Hidden.Neurons.Length);
            Assert.AreEqual(6, network.Machines[0].Visible.Neurons.Length);
            Assert.AreEqual(2, network.Machines[1].Visible.Neurons.Length);

            network.Pop();

            Assert.AreEqual(1, network.Machines.Count);
            Assert.AreEqual(6, network.InputsCount);
            Assert.AreEqual(2, network.OutputCount);
            Assert.AreEqual(2, network.Machines[0].Hidden.Neurons.Length);
            Assert.AreEqual(6, network.Machines[0].Visible.Neurons.Length);

            network.Push(4);
            network.Push(10);

            Assert.AreEqual(3, network.Machines.Count);
            Assert.AreEqual(6, network.InputsCount);
            Assert.AreEqual(10, network.OutputCount);
            Assert.AreEqual(2, network.Machines[0].Hidden.Neurons.Length);
            Assert.AreEqual(4, network.Machines[1].Hidden.Neurons.Length);
            Assert.AreEqual(10, network.Machines[2].Hidden.Neurons.Length);

            Assert.AreEqual(6, network.Machines[0].Visible.Neurons.Length);
            Assert.AreEqual(2, network.Machines[1].Visible.Neurons.Length);
            Assert.AreEqual(4, network.Machines[2].Visible.Neurons.Length);

            network.Pop();

            Assert.AreEqual(2, network.Machines.Count);
            Assert.AreEqual(6, network.InputsCount);
            Assert.AreEqual(4, network.OutputCount);
            Assert.AreEqual(2, network.Machines[0].Hidden.Neurons.Length);
            Assert.AreEqual(4, network.Machines[1].Hidden.Neurons.Length);

            Assert.AreEqual(6, network.Machines[0].Visible.Neurons.Length);
            Assert.AreEqual(2, network.Machines[1].Visible.Neurons.Length);
        }
Ejemplo n.º 14
0
 public override bool Load(string path)
 {
     if (!File.Exists(path)) return false;
     _Network = DeepBeliefNetwork.Load(path);
     InitializeTeacher();
     return true;
 }
Ejemplo n.º 15
0
        static void Main(string[] args)
        {
            double[][] inputs;
            double[][] outputs;
            double[][] testInputs;
            double[][] testOutputs;

            // Load ascii digits dataset.
            inputs = DataManager.Load(@"../../../data/data.txt", out outputs);

            // The first 500 data rows will be for training. The rest will be for testing.
            testInputs = inputs.Skip(500).ToArray();
            testOutputs = outputs.Skip(500).ToArray();
            inputs = inputs.Take(500).ToArray();
            outputs = outputs.Take(500).ToArray();

            // Setup the deep belief network and initialize with random weights.
            DeepBeliefNetwork network = new DeepBeliefNetwork(inputs.First().Length, 10, 10);
            new GaussianWeights(network, 0.1).Randomize();
            network.UpdateVisibleWeights();
            
            // Setup the learning algorithm.
            DeepBeliefNetworkLearning teacher = new DeepBeliefNetworkLearning(network)
            {
                Algorithm = (h, v, i) => new ContrastiveDivergenceLearning(h, v)
                {
                    LearningRate = 0.1,
                    Momentum = 0.5,
                    Decay = 0.001,
                }
            };

            // Setup batches of input for learning.
            int batchCount = Math.Max(1, inputs.Length / 100);
            // Create mini-batches to speed learning.
            int[] groups = Accord.Statistics.Tools.RandomGroups(inputs.Length, batchCount);
            double[][][] batches = inputs.Subgroups(groups);
            // Learning data for the specified layer.
            double[][][] layerData;

            // Unsupervised learning on each hidden layer, except for the output layer.
            for (int layerIndex = 0; layerIndex < network.Machines.Count - 1; layerIndex++)
            {
                teacher.LayerIndex = layerIndex;
                layerData = teacher.GetLayerInput(batches);
                for (int i = 0; i < 200; i++)
                {
                    double error = teacher.RunEpoch(layerData) / inputs.Length;
                    if (i % 10 == 0)
                    {
                        Console.WriteLine(i + ", Error = " + error);
                    }
                }
            }

            // Supervised learning on entire network, to provide output classification.
            var teacher2 = new BackPropagationLearning(network)
            {
                LearningRate = 0.1,
                Momentum = 0.5
            };

            // Run supervised learning.
            for (int i = 0; i < 500; i++)
            {
                double error = teacher2.RunEpoch(inputs, outputs) / inputs.Length;
                if (i % 10 == 0)
                {
                    Console.WriteLine(i + ", Error = " + error);
                }
            }

            // Test the resulting accuracy.
            int correct = 0;
            for (int i = 0; i < inputs.Length; i++)
            {
                double[] outputValues = network.Compute(testInputs[i]);
                if (DataManager.FormatOutputResult(outputValues) == DataManager.FormatOutputResult(testOutputs[i]))
                {
                    correct++;
                }
            }

            Console.WriteLine("Correct " + correct + "/" + inputs.Length + ", " + Math.Round(((double)correct / (double)inputs.Length * 100), 2) + "%");
            Console.Write("Press any key to quit ..");
            Console.ReadKey();
        }