Ejemplo n.º 1
0
        private double[] gradient(double[] w)
        {
            double[] y = Outputs;
            double   p = Epsilon;

            sizeI = 0;
            for (int i = 0; i < y.Length; i++)
            {
                double d = z[i] - y[i];

                // generate index set I
                if (d < -p)
                {
                    z[sizeI] = C[i] * (d + p);
                    I[sizeI] = i;
                    sizeI++;
                }
                else if (d > p)
                {
                    z[sizeI] = C[i] * (d - p);
                    I[sizeI] = i;
                    sizeI++;
                }
            }

            LinearNewtonMethod.subXTv(Kernel, Inputs, biasIndex, I, sizeI, z, g);

            for (int i = 0; i < w.Length; i++)
            {
                g[i] = w[i] + 2 * g[i];
            }

            return(g);
        }
Ejemplo n.º 2
0
        private double objective(double[] w)
        {
            double[] y = Outputs;
            double   p = Epsilon;

            LinearNewtonMethod.Xv(Kernel, Inputs, biasIndex, w, z);

            double f = 0;

            for (int i = 0; i < w.Length; i++)
            {
                f += w[i] * w[i];
            }
            f /= 2;

            for (int i = 0; i < y.Length; i++)
            {
                double d = z[i] - y[i];

                if (d < -p)
                {
                    f += C[i] * (d + p) * (d + p);
                }

                else if (d > p)
                {
                    f += C[i] * (d - p) * (d - p);
                }
            }

            return(f);
        }
Ejemplo n.º 3
0
        private double[] hessian(double[] s)
        {
            LinearNewtonMethod.subXv(Kernel, Inputs, biasIndex, I, sizeI, s, wa);

            for (int i = 0; i < sizeI; i++)
            {
                wa[i] = C[I[i]] * wa[i];
            }

            LinearNewtonMethod.subXTv(Kernel, Inputs, biasIndex, I, sizeI, wa, h);
            for (int i = 0; i < s.Length; i++)
            {
                h[i] = s[i] + 2 * h[i];
            }

            return(h);
        }
Ejemplo n.º 4
0
        public void LearnTest()
        {

            double[][] inputs =
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            int[] xor =
            {
                -1,
                 1,
                 1,
                -1
            };

            var kernel = new Polynomial(2, 0.0);

            double[][] augmented = new double[inputs.Length][];
            for (int i = 0; i < inputs.Length; i++)
                augmented[i] = kernel.Transform(inputs[i]);

            SupportVectorMachine machine = new SupportVectorMachine(augmented[0].Length);

            // Create the Least Squares Support Vector Machine teacher
            var learn = new LinearNewtonMethod(machine, augmented, xor);

            // Run the learning algorithm
            double error = learn.Run();
            Assert.AreEqual(0, error);

            int[] output = augmented.Apply(p => Math.Sign(machine.Compute(p)));
            for (int i = 0; i < output.Length; i++)
                Assert.AreEqual(System.Math.Sign(xor[i]), System.Math.Sign(output[i]));
        }
Ejemplo n.º 5
0
        public void ComputeTest5()
        {
            var dataset = SequentialMinimalOptimizationTest.yinyang;
            var inputs = dataset.Submatrix(null, 0, 1).ToArray();
            var labels = dataset.GetColumn(2).ToInt32();

            var kernel = new Polynomial(2, 0);

            {
                var machine = new KernelSupportVectorMachine(kernel, inputs[0].Length);
                var smo = new SequentialMinimalOptimization(machine, inputs, labels);
                smo.UseComplexityHeuristic = true;

                double error = smo.Run();
                Assert.AreEqual(0.2, error);

                Assert.AreEqual(0.11714451552090824, smo.Complexity);

                int[] actual = new int[labels.Length];
                for (int i = 0; i < actual.Length; i++)
                    actual[i] = Math.Sign(machine.Compute(inputs[i]));

                ConfusionMatrix matrix = new ConfusionMatrix(actual, labels);
                Assert.AreEqual(20, matrix.FalseNegatives);
                Assert.AreEqual(0, matrix.FalsePositives);
                Assert.AreEqual(30, matrix.TruePositives);
                Assert.AreEqual(50, matrix.TrueNegatives);
            }

            {
                Accord.Math.Tools.SetupGenerator(0);

                var projection = inputs.Apply(kernel.Transform);
                var machine = new SupportVectorMachine(projection[0].Length);
                var smo = new LinearNewtonMethod(machine, projection, labels);
                smo.UseComplexityHeuristic = true;

                double error = smo.Run();
                Assert.AreEqual(0.18, error);

                Assert.AreEqual(0.11714451552090821, smo.Complexity, 1e-15);

                int[] actual = new int[labels.Length];
                for (int i = 0; i < actual.Length; i++)
                    actual[i] = Math.Sign(machine.Compute(projection[i]));

                ConfusionMatrix matrix = new ConfusionMatrix(actual, labels);
                Assert.AreEqual(17, matrix.FalseNegatives);
                Assert.AreEqual(1, matrix.FalsePositives);
                Assert.AreEqual(33, matrix.TruePositives);
                Assert.AreEqual(49, matrix.TrueNegatives);
            }

        }
Ejemplo n.º 6
0
        public static void train_one(Problem prob, Parameters param, out double[] w, double Cp, double Cn)
        {
            double[][] inputs = prob.Inputs;
            int[] labels = prob.Outputs.Apply(x => x >= 0 ? 1 : -1);

            double eps = param.Tolerance;

            int pos = 0;
            for (int i = 0; i < labels.Length; i++)
                if (labels[i] >= 0) pos++;
            int neg = prob.Outputs.Length - pos;

            double primal_solver_tol = eps * Math.Max(Math.Min(pos, neg), 1.0) / prob.Inputs.Length;

            SupportVectorMachine svm = new SupportVectorMachine(prob.Dimensions);
            ISupportVectorMachineLearning teacher = null;


            switch (param.Solver)
            {
                case LibSvmSolverType.L2RegularizedLogisticRegression:

                    // l2r_lr_fun
                    teacher = new ProbabilisticNewtonMethod(svm, inputs, labels)
                    {
                        PositiveWeight = Cp,
                        NegativeWeight = Cn,
                        Tolerance = primal_solver_tol
                    }; break;


                case LibSvmSolverType.L2RegularizedL2LossSvc:

                    // fun_obj=new l2r_l2_svc_fun(prob, C);
                    teacher = new LinearNewtonMethod(svm, inputs, labels)
                    {
                        PositiveWeight = Cp,
                        NegativeWeight = Cn,
                        Tolerance = primal_solver_tol
                    }; break;


                case LibSvmSolverType.L2RegularizedL2LossSvcDual:

                    // solve_l2r_l1l2_svc(prob, w, eps, Cp, Cn, L2R_L2LOSS_SVC_DUAL);
                    teacher = new LinearCoordinateDescent(svm, inputs, labels)
                    {
                        Loss = Loss.L2,
                        PositiveWeight = Cp,
                        NegativeWeight = Cn,
                    }; break;


                case LibSvmSolverType.L2RegularizedL1LossSvcDual:

                    // solve_l2r_l1l2_svc(prob, w, eps, Cp, Cn, L2R_L1LOSS_SVC_DUAL);
                    teacher = new LinearCoordinateDescent(svm, inputs, labels)
                    {
                        Loss = Loss.L1,
                        PositiveWeight = Cp,
                        NegativeWeight = Cn,
                    }; break;


                case LibSvmSolverType.L1RegularizedLogisticRegression:

                    // solve_l1r_lr(&prob_col, w, primal_solver_tol, Cp, Cn);
                    teacher = new ProbabilisticCoordinateDescent(svm, inputs, labels)
                    {
                        PositiveWeight = Cp,
                        NegativeWeight = Cn,
                        Tolerance = primal_solver_tol
                    }; break;


                case LibSvmSolverType.L2RegularizedLogisticRegressionDual:

                    // solve_l2r_lr_dual(prob, w, eps, Cp, Cn);
                    teacher = new ProbabilisticDualCoordinateDescent(svm, inputs, labels)
                    {
                        PositiveWeight = Cp,
                        NegativeWeight = Cn,
                        Tolerance = primal_solver_tol,
                    }; break;
            }


            Trace.WriteLine("Training " + param.Solver);
            
            // run the learning algorithm
            var sw = Stopwatch.StartNew();
            double error = teacher.Run();
            sw.Stop();

            // save the solution
            w = svm.ToWeights();

            Trace.WriteLine(String.Format("Finished {0}: {1} in {2}", 
                param.Solver, error, sw.Elapsed));
        }