Ejemplo n.º 1
0
        public static List <Image <Gray, byte> > test(Image <Gray, byte> plate_after_preprocessing)
        {
            VectorOfVectorOfPoint      contours = Image_utils.find_all_contours(plate_after_preprocessing);
            List <VectorOfPoint>       hulls    = get_convex_hull(plate_after_preprocessing, contours);
            List <Image <Gray, byte> > order_character_image = ordered_character(plate_after_preprocessing, hulls);

            return(order_character_image);
        }
Ejemplo n.º 2
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="input_img">original image</param>
        /// <param name="type"></param>
        /// <returns></returns>
        public static List <Image <Gray, byte> > find_all_possible_plates(Image <Gray, byte> input_img, Plate_feature.type_of_plate type)
        {
            Image <Gray, byte> blur     = Image_utils.gaussian_blur(input_img);
            Image <Gray, byte> sobelx   = Image_utils.sobel_X(blur).Convert <Gray, byte>();
            Image <Gray, byte> adaptive = Image_utils.adaptive_threshold(sobelx);
            Image <Gray, byte> morp     = Image_utils.morphology_ex(adaptive, Plate_feature.type_of_plate.RECT_PLATE);

            VectorOfVectorOfPoint contours = Image_utils.find_all_contours(morp);

            List <Image <Gray, byte> > approved_plates = new List <Image <Gray, byte> >();

            for (int i = 0; i < contours.Size; i++)
            {
                double area = CvInvoke.ContourArea(contours[i]);

                Rectangle   r  = CvInvoke.BoundingRectangle(contours[i]);
                RotatedRect rr = CvInvoke.MinAreaRect(contours[i]);

                Image <Gray, byte> suspected_plate = input_img.Copy(r);


                Tuple <Image <Gray, byte>, Rectangle>     after_clean_plate_tuple;
                Tuple <bool, List <Image <Gray, byte> > > after_check_plate_has_characters_tuple;

                if (!Plate_feature.ratio_check(type, area, r.Width, r.Height))
                {
                    continue;
                }
                else
                {
                    if (!Plate_feature.validate_rotation_and_ratio(type, rr))
                    {
                        continue;
                    }
                    else
                    {
                        after_clean_plate_tuple = clean_plate(suspected_plate, type);
                        after_check_plate_has_characters_tuple = check_plate_has_character(after_clean_plate_tuple.Item1, type);

                        if (!after_check_plate_has_characters_tuple.Item1)
                        {
                            continue;
                        }
                        else
                        {
                            approved_plates = after_check_plate_has_characters_tuple.Item2;
                        }
                    }
                }
            }
            return(approved_plates);
        }
Ejemplo n.º 3
0
        /// <summary>
        ///
        /// </summary>
        /// <param name="plate">plate cropped from original image</param>
        /// <returns>List of images of characters</returns>
        public static List <Image <Gray, byte> > segment_characters_from_plate(Image <Gray, byte> plate)
        {
            List <Image <Gray, byte> > segmented_characters = new List <Image <Gray, byte> >();
            //Image<Gray, byte> blur_plate = Image_utils.gaussian_blur(plate);
            Image <Gray, byte> threshold_plate = Image_utils.adaptive_threshold(plate);
            //Image<Gray, byte> threshold_plate = plate.ThresholdBinary(new Gray(100), new Gray(255));

            //CvInvoke.Imshow("plate", threshold_plate);

            VectorOfVectorOfPoint contours = Image_utils.find_all_contours(threshold_plate);

            List <VectorOfPoint> hulls    = get_convex_hull(plate, contours);
            Image <Gray, byte>   hull_img = new Image <Gray, byte>(plate.Width, plate.Height, new Gray(0));

            foreach (VectorOfPoint hull in hulls)
            {
                CvInvoke.FillConvexPoly(hull_img, hull, new MCvScalar(255));
            }

            //CvInvoke.Imshow("hull", hull_img);

            VectorOfVectorOfPoint final_contours = Image_utils.find_all_contours(hull_img);

            if (final_contours == null)
            {
                return(segmented_characters);
            }

            Dictionary <Rectangle, VectorOfPoint> dict_to_order = new Dictionary <Rectangle, VectorOfPoint>();

            for (int i = 0; i < final_contours.Size; i++)
            {
                Rectangle r = CvInvoke.BoundingRectangle(final_contours[i]);
                dict_to_order.Add(r, final_contours[i]);
            }

            List <VectorOfPoint> ordered_contours = new List <VectorOfPoint>();
            var ordered_result = dict_to_order.OrderByDescending(i => i.Key.X);

            foreach (KeyValuePair <Rectangle, VectorOfPoint> kvp in ordered_result)
            {
                ordered_contours.Add(kvp.Value);
                Image <Gray, byte> character = plate.Copy(kvp.Key);
                segmented_characters.Add(character);
            }
            //CvInvoke.WaitKey();
            //CvInvoke.DestroyAllWindows();
            return(segmented_characters);
        }
Ejemplo n.º 4
0
        /// <summary>
        /// clean the input suspected plate image and decide if that is a possible plate or not by checking ratio condition.
        /// </summary>
        /// <param name="suspected_plate"></param>
        /// <param name="type"></param>
        /// <returns>a tupple that contains:
        /// 1: image of the plate,
        /// 2: the (x,y,w,h) of the actual plate in the image
        /// </returns>
        public static Tuple <Image <Gray, byte>, Rectangle> clean_plate(Image <Gray, byte> suspected_plate, Plate_feature.type_of_plate type)
        {
            //Image<Gray, byte> threshold_plate = Image_utils.adaptive_threshold(suspected_plate);
            Image <Gray, byte>    threshold_plate = suspected_plate.ThresholdBinary(new Gray(100), new Gray(255));
            VectorOfVectorOfPoint contours        = Image_utils.find_all_contours(threshold_plate);

            Rectangle r = new Rectangle();

            Tuple <Image <Gray, byte>, Rectangle> output = new Tuple <Image <Gray, byte>, Rectangle>(suspected_plate, r);

            if (contours != null)
            {
                double        max_area    = 0;
                VectorOfPoint max_contour = new VectorOfPoint();

                for (int i = 0; i < contours.Size; i++)
                {
                    double temp = CvInvoke.ContourArea(contours[i]);
                    if (temp > max_area)
                    {
                        max_area    = temp;
                        max_contour = contours[i];
                    }
                }

                VectorOfVectorOfPoint c = new VectorOfVectorOfPoint(max_contour);
                CvInvoke.DrawContours(threshold_plate, c, 0, new MCvScalar(0), 2);

                r = CvInvoke.BoundingRectangle(max_contour);

                RotatedRect        plate_feature = CvInvoke.MinAreaRect(max_contour);
                Image <Gray, byte> rotated_plate = crop_and_rotated_plate(suspected_plate, plate_feature);

                output = new Tuple <Image <Gray, byte>, Rectangle>(rotated_plate, r);

                return(output);
            }
            else
            {
                return(output);
            }
        }