Ejemplo n.º 1
0
        /*
         * Gets (and removes) a random example from the 'presentlyProcessed'
         */
        public NNExample getExample(int index)
        {
            NNExample result = presentlyProcessed[index];

            presentlyProcessed.RemoveAt(index);
            return(result);
        }
Ejemplo n.º 2
0
        /*
         * Gets (and removes) a random example from the 'presentlyProcessed'
         */
        public NNExample getExampleAtRandom()
        {
            int       i      = Util.randomNumberBetween(0, (presentlyProcessed.Count - 1));
            NNExample result = presentlyProcessed[i];

            presentlyProcessed.RemoveAt(i);
            return(result);
        }
Ejemplo n.º 3
0
 public void trainOn(NNDataSet innds, int numberofEpochs)
 {
     for (int i = 0; i < numberofEpochs; i++)
     {
         innds.refreshDataset();
         while (innds.hasMoreExamples())
         {
             NNExample nne = innds.getExampleAtRandom();
             processInput(nne.getInput());
             Vector error = layer.errorVectorFrom(nne.getTarget());
             processError(error);
         }
     }
 }
Ejemplo n.º 4
0
 public int[] testOnDataSet(NNDataSet nnds)
 {
     int[] result = new int[] { 0, 0 };
     nnds.refreshDataset();
     while (nnds.hasMoreExamples())
     {
         NNExample nne        = nnds.getExampleAtRandom();
         Vector    prediction = predict(nne);
         if (nne.isCorrect(prediction))
         {
             result[0] = result[0] + 1;
         }
         else
         {
             result[1] = result[1] + 1;
         }
     }
     return(result);
 }
Ejemplo n.º 5
0
 public Vector predict(NNExample nne)
 {
     return(processInput(nne.getInput()));
 }
	public Vector predict(NNExample nne) {
		return processInput(nne.getInput());
	}