Ejemplo n.º 1
0
        private static void UpdateGraphArcs(List <arc> reviewedArc)
        {
            foreach (Connection arc in reviewedArc)
            {
                //$ Incorperated the ability to add arcs, because otherwise resolving incomplete graphs
                //  would be impossible

                bool reversed    = false;
                var  counterpart = (Connection)AssemblyGraph.arcs.FirstOrDefault(c => c.XmlFrom == arc.XmlFrom && c.XmlTo == arc.XmlTo);

                if (counterpart == null)
                {
                    counterpart = (Connection)AssemblyGraph.arcs.FirstOrDefault(c => c.XmlTo == arc.XmlFrom && c.XmlFrom == arc.XmlTo);
                    if (counterpart != null)
                    {
                        reversed = true;
                    }
                }

                if (counterpart == null)
                {
                    AssemblyGraph.addArc(AssemblyGraph.nodes.First(a => a.name == arc.XmlFrom),
                                         AssemblyGraph.nodes.First(a => a.name == arc.XmlTo), "", typeof(Connection));
                    counterpart = (Connection)AssemblyGraph.arcs.Last();
                }
                else
                {
                    if (arc.Certainty == 0)
                    {
                        AssemblyGraph.removeArc(counterpart);
                    }
                }

                counterpart.FiniteDirections   = AddDirections(arc.FiniteDirections);
                counterpart.InfiniteDirections = AddDirections(arc.InfiniteDirections);
            }
        }
        // This class is added as an alternative for current Nonadjacent blocking determination approach.
        // The overal approach is the same as before (ray shooting), but number of both rays and blocking
        // triangles are droped to speedup the function.
        // Rays: Instead of checking blockings for every direction, for every two parts, their possible
        //       blocking directions are found based upon the planes that can seperate the two CVHs linearlly.
        //       (If the CVHs are not linearly seperable we cannot apply this.)
        // Triangles: Number of triangles (of the blocking solid) is the most affecting factor in blocking
        //       determination. Code gets really really slow when it goes to check intersection of the ray
        //       and all the triangles of the solid. We are avoiding this problem here by partitionaning
        //       our search space into k number of sections obtained originally from OBB of the solid.
        internal static void Run(designGraph graph, Dictionary <string, List <TessellatedSolid> > subAssems, List <int> gDir)
        {
            Console.WriteLine("\n\nNonadjacent Blocking Determination is running ....");
            long totalCases      = 0;
            var  subAssemsToList = subAssems.ToList();

            for (var i = 0; i < subAssems.Count - 1; i++)
            {
                var subAssem1 = subAssemsToList[i];
                for (var j = i + 1; j < subAssems.Count; j++)
                {
                    var subAssem2 = subAssemsToList[j];
                    var tri2Sub1  = subAssem1.Value.Sum(s => s.Faces.Length);
                    var tri2Sub2  = subAssem2.Value.Sum(s => s.Faces.Length);
                    totalCases += tri2Sub1 * tri2Sub2;
                }
            }
            ObbFacesHashSet = new Dictionary <TessellatedSolid, HashSet <PolygonalFace> >();
            CombinedCVHForMultipleGeometries = new Dictionary <string, TVGLConvexHull>();

            long counter = 0;

            foreach (var subAssem in subAssems)
            {
                List <BoundingBox> pairList = new List <BoundingBox>();
                foreach (var s in subAssem.Value)
                {
                    //CvhHashSet.Add(s, new HashSet<PolygonalFace>(s.ConvexHull.Faces));


                    //$ What was used previously

                    /*
                     * ObbFacesHashSet.Add(s,
                     *  new HashSet<PolygonalFace>(
                     *      PartitioningSolid.TwelveFaceGenerator(
                     *          BoundingGeometry.OrientedBoundingBoxDic.First(b=> b.Key.Name == s.Name).Value.CornerVertices.Select(
                     *              cv => new Vertex(cv.Position)).ToArray())));
                     */
                    KeyValuePair <TessellatedSolid, BoundingBox> pair = BoundingGeometry.OrientedBoundingBoxDic.FirstOrDefault(b => b.Key.Name == s.Name);
                    if (!pair.Equals(default(KeyValuePair <TessellatedSolid, BoundingBox>)))
                    {
                        ObbFacesHashSet.Add(s, new HashSet <PolygonalFace>(PartitioningSolid.TwelveFaceGenerator(pair.Value.CornerVertices.Select(cv => new Vertex(cv.Position)).ToArray())));
                    }
                }
            }

            CreateCombinedCVHs(subAssems);



            var solidsL = subAssems.ToList();


            int width   = 55;
            int total   = (solidsL.Count + 1) * (solidsL.Count / 2);
            int refresh = (int)Math.Ceiling(((float)total) / ((float)(width)));
            int check   = 0;

            LoadingBar.start(width, 0);


            for (var i = 0; i < solidsL.Count; i++)
            {
                var solidMoving = solidsL[i].Value;
                for (var j = i + 1; j < solidsL.Count; j++)
                {
                    if (check % refresh == 0)
                    {
                        LoadingBar.refresh(width, ((float)check) / ((float)total));
                    }
                    check++;

                    var blocked = false;
                    // check the convex hull of these two solids to find the planes tha can linearly seperate them
                    // solid1 is moving and solid2 is blocking
                    var solidBlocking = solidsL[j].Value;
                    counter += solidMoving.Sum(s => s.Faces.Length) * solidBlocking.Sum(s => s.Faces.Length);
                    if (
                        graph.arcs.Any(
                            a => a is Connection &&
                            ((a.From.name == solidsL[i].Key && a.To.name == solidsL[j].Key) ||
                             (a.From.name == solidsL[j].Key && a.To.name == solidsL[i].Key))))
                    {
                        continue;
                    }
                    // Add a secondary arc to the
                    var from = GetNode(graph, solidsL[i].Key);
                    var to   = GetNode(graph, solidsL[j].Key);
                    graph.addArc(from, to, from.name + to.name, typeof(SecondaryConnection));
                    var lastAddedSecArc    = (SecondaryConnection)graph.arcs.Last();
                    var filteredDirections = FilterGlobalDirections(solidMoving, solidBlocking, gDir);
                    var oppositeFiltrdDirs = filteredDirections.Select(d => DisassemblyDirections.DirectionsAndOppositsForGlobalpool[d]).ToList();
                    // remember this: if solid2 is not blocking solid1, we need to check if solid1 is blocking 2 in the opposite direction.
                    // if filteredDirections.Count == gDir.Count then the CVHs overlap
                    // Only directions need to be checked which the moving part can move along them:
                    var scndFilteredDirectionsMoving   = FinalSetOfDirectionsFinder(graph, solidMoving, filteredDirections);
                    var scndFilteredDirectionsBlocking = new List <int>();
                    scndFilteredDirectionsBlocking = FinalSetOfDirectionsFinder(graph, solidBlocking,
                                                                                filteredDirections.Count == gDir.Count ? filteredDirections : oppositeFiltrdDirs);
                    foreach (
                        var d in
                        scndFilteredDirectionsMoving.Where(
                            d =>
                            !scndFilteredDirectionsBlocking.Contains(
                                DisassemblyDirections.DirectionsAndOppositsForGlobalpool[d])))
                    {
                        scndFilteredDirectionsBlocking.Add(DisassemblyDirections.DirectionsAndOppositsForGlobalpool[d]);
                    }
                    foreach (
                        var d in
                        scndFilteredDirectionsBlocking.Where(
                            d =>
                            !scndFilteredDirectionsMoving.Contains(
                                DisassemblyDirections.DirectionsAndOppositsForGlobalpool[d])))
                    {
                        scndFilteredDirectionsMoving.Add(DisassemblyDirections.DirectionsAndOppositsForGlobalpool[d]);
                    }
                    if (filteredDirections.Count == gDir.Count)
                    {
                        //continue;
                        Parallel.ForEach(scndFilteredDirectionsMoving, filtDir =>
                                         //foreach (var filtDir in filteredDirections)
                        {
                            var direction = DisassemblyDirections.Directions[filtDir];
                            blocked       = BlockingDeterminationWithCvhOverlapping(direction, solidMoving, solidBlocking);
                            if (blocked)
                            {
                                lock (lastAddedSecArc.Directions)
                                    lastAddedSecArc.Directions.Add(filtDir);
                                if (
                                    scndFilteredDirectionsBlocking.Contains(
                                        DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]))
                                {
                                    scndFilteredDirectionsBlocking.Remove(
                                        DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]);
                                }
                            }
                        });
                        Parallel.ForEach(scndFilteredDirectionsBlocking, filtDir =>
                                         //foreach (var filtDir in filteredDirections)
                        {
                            var direction = DisassemblyDirections.Directions[filtDir];
                            blocked       = BlockingDeterminationWithCvhOverlapping(direction, solidBlocking, solidMoving);
                            if (blocked)
                            {
                                lock (lastAddedSecArc.Directions)
                                    lastAddedSecArc.Directions.Add(DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]);
                            }
                        });
                        if (lastAddedSecArc.Directions.Count == 0)
                        {
                            graph.removeArc(lastAddedSecArc);
                        }
                    }
                    else
                    {
                        //continue;
                        // If CVHs dont overlap:

                        //$ Made this non-parallel for debugging purposes - switch back later
                        Parallel.ForEach(scndFilteredDirectionsMoving, filtDir =>
                                         //foreach (var filtDir in filteredDirections)
                        {
                            var direction = DisassemblyDirections.Directions[filtDir];
                            blocked       = BlockingDeterminationNoCvhOverlapping(direction, solidMoving, solidBlocking);
                            if (blocked)
                            {
                                lock (lastAddedSecArc.Directions)
                                    lastAddedSecArc.Directions.Add(filtDir);
                                if (
                                    scndFilteredDirectionsBlocking.Contains(
                                        DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]))
                                {
                                    scndFilteredDirectionsBlocking.Remove(
                                        DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]);
                                }
                            }
                        });

                        Parallel.ForEach(scndFilteredDirectionsBlocking, filtDir =>
                                         //foreach (var filtDir in filteredDirections)
                        {
                            var direction = DisassemblyDirections.Directions[filtDir];
                            blocked       = BlockingDeterminationNoCvhOverlapping(direction, solidBlocking, solidMoving);
                            if (blocked)
                            {
                                lock (lastAddedSecArc.Directions)
                                    lastAddedSecArc.Directions.Add(DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]);
                            }
                        });
                        if (lastAddedSecArc.Directions.Count == 0)
                        {
                            graph.removeArc(lastAddedSecArc);
                        }
                    }
                }
            }
            LoadingBar.refresh(width, 1);
            CreateSameDirectionDictionary(gDir);
        }