Ejemplo n.º 1
0
    public void CancelSelection()
    {
        switch (curChar)
        {
        case SelectableCharacters.Leslie:
            CD.GetComponent <Collider2D>().isTrigger = true;
            Leslie.GetComponent <Image>().sprite     = HoverImages[0];
            break;

        case SelectableCharacters.Jona:
            ND.GetComponent <Collider2D>().isTrigger = true;
            Jona.GetComponent <Image>().sprite       = HoverImages[1];
            break;

        case SelectableCharacters.Ashita:
            NED.GetComponent <Collider2D>().isTrigger = true;
            Ashita.GetComponent <Image>().sprite      = HoverImages[2];
            break;

        case SelectableCharacters.Catarine:
            ED.GetComponent <Collider2D>().isTrigger = true;
            Catarine.GetComponent <Image>().sprite   = HoverImages[3];
            break;

        case SelectableCharacters.Ramsey:
            SED.GetComponent <Collider2D>().isTrigger = true;
            Ramsey.GetComponent <Image>().sprite      = HoverImages[4];
            break;

        case SelectableCharacters.Drogas:
            SD.GetComponent <Collider2D>().isTrigger = true;
            Drogas.GetComponent <Image>().sprite     = HoverImages[5];
            break;

        case SelectableCharacters.Sylvia:
            SWD.GetComponent <Collider2D>().isTrigger = true;
            Sylvia.GetComponent <Image>().sprite      = HoverImages[6];
            break;

        case SelectableCharacters.Bjin:
            WD.GetComponent <Collider2D>().isTrigger = true;
            Bjin.GetComponent <Image>().sprite       = HoverImages[7];
            break;

        case SelectableCharacters.Xavier:
            NWD.GetComponent <Collider2D>().isTrigger = true;
            Xavier.GetComponent <Image>().sprite      = HoverImages[8];
            break;

        case SelectableCharacters.None:
            break;

        default:
            break;
        }
        weaponSelect.SetActive(false);
        weaponSelectActive = false;
        characterChosen    = false;
    }
 internal WeightInitialisationProvider(ILinearAlgebraProvider lap)
 {
     Ones       = new Constant(lap, 0f, 1f);
     Zeroes     = new Constant(lap, 0f, 0f);
     Gaussian   = new Gaussian(lap);
     Xavier     = new Xavier(lap);
     Identity   = new Identity(lap, 1f);
     Identity01 = new Identity(lap, 0.1f);
 }
Ejemplo n.º 3
0
 public void makeAllDissapear()
 {
     Leslie.SetActive(false);
     Jona.SetActive(false);
     Ashita.SetActive(false);
     Catarine.SetActive(false);
     Ramsey.SetActive(false);
     Drogas.SetActive(false);
     Sylvia.SetActive(false);
     Bjin.SetActive(false);
     Xavier.SetActive(false);
 }
Ejemplo n.º 4
0
        public FeatureExpander(string network, string[] outputs, int[] num_filters, bool use_1x1_transition = true,
                               bool use_bn     = true, float reduce_ratio = 1, int min_depth      = 128, bool global_pool       = false,
                               bool pretrained = false, Context ctx       = null, string[] inputs = null, ParameterDict @params = null) : base(null, null, @params)
        {
            var(p_i, p_o, p_p) = __internal__.ParseNetwork(network, outputs, inputs, pretrained, ctx);
            // append more layers
            var y           = p_o.Last();
            var weight_init = new Xavier(rnd_type: "gaussian", factor_type: "out", magnitude: 2);

            foreach (var _tup_2 in num_filters.Select((_p_1, _p_2) => Tuple.Create(_p_2, _p_1)))
            {
                var i = _tup_2.Item1;
                var f = _tup_2.Item2;
                if (use_1x1_transition)
                {
                    var num_trans = Math.Max(min_depth, Convert.ToInt32(Math.Round(f * reduce_ratio)));

                    y = sym.Convolution(y, weight_init.InitWeight("weight"), null, num_filter: num_trans, kernel: new Shape(1, 1), no_bias: use_bn, symbol_name: $"expand_trans_conv{i}");

                    if (use_bn)
                    {
                        y = sym.BatchNorm(y, null, null, null, null, symbol_name: $"expand_trans_bn{i}");
                    }

                    y = sym.Activation(y, act_type: ActivationType.Relu, symbol_name: $"expand_trans_relu{i}");
                }

                y = sym.Convolution(y, weight_init.InitWeight("weight"), null, num_filter: f, kernel: new Shape(3, 3), pad: new Shape(1, 1), stride: new Shape(2, 2), no_bias: use_bn, symbol_name: $"expand_conv{i}");
                if (use_bn)
                {
                    y = sym.BatchNorm(y, null, null, null, null, symbol_name: $"expand_bn{i}");
                }

                y = sym.Activation(y, act_type: ActivationType.Relu, symbol_name: $"expand_reu{i}");
                p_o.Add(y);
            }
            if (global_pool)
            {
                p_o.Add(sym.Pooling(y, pool_type: PoolingType.Avg, global_pool: true, kernel: new Shape(1, 1)));
            }

            base.Construct(p_o, p_i, p_p);
        }
Ejemplo n.º 5
0
        private static void Main()
        {
            /*basic config*/
            const int   batchSize    = 256;
            const int   maxEpo       = 100;
            const float learningRate = 1e-4f;
            const float weightDecay  = 1e-4f;

            /*context and net symbol*/
            var ctx = Context.Gpu();
            var net = AlexnetSymbol(2);

            /*args_map and aux_map is used for parameters' saving*/
            var argsMap = new Dictionary <string, NDArray>();
            var auxMap  = new Dictionary <string, NDArray>();

            /*we should tell mxnet the shape of data and label*/
            argsMap["data"]  = new NDArray(new Shape(batchSize, 3, 256, 256), ctx);
            argsMap["label"] = new NDArray(new Shape(batchSize), ctx);

            /*with data and label, executor can be generated varmatically*/
            using (var exec = net.SimpleBind(ctx, argsMap))
            {
                var argNames            = net.ListArguments();
                var auxiliaryDictionary = exec.AuxiliaryDictionary();
                var argmentDictionary   = exec.ArgmentDictionary();

                /*if fine tune from some pre-trained model, we should load the parameters*/
                // NDArray.Load("./model/alex_params_3", nullptr, &args_map);
                /*else, we should use initializer Xavier to init the params*/
                var xavier = new Xavier(RandType.Gaussian, FactorType.In, 2.34f);
                foreach (var arg in argmentDictionary)
                {
                    /*be careful here, the arg's name must has some specific ends or starts for
                     * initializer to call*/
                    xavier.Operator(arg.Key, arg.Value);
                }

                /*print out to check the shape of the net*/
                foreach (var s in net.ListArguments())
                {
                    Logging.LG(s);

                    var sb = new StringBuilder();
                    var k  = argmentDictionary[s].GetShape();
                    foreach (var i in k)
                    {
                        sb.Append($"{i} ");
                    }

                    Logging.LG(sb.ToString());
                }

                /*these binary files should be generated using im2rc tools, which can be found
                 * in mxnet/bin*/
                var trainIter = new MXDataIter("ImageRecordIter")
                                .SetParam("path_imglist", "./data/train.lst")
                                .SetParam("path_imgrec", "./data/train.rec")
                                .SetParam("data_shape", new Shape(3, 256, 256))
                                .SetParam("batch_size", batchSize)
                                .SetParam("shuffle", 1)
                                .CreateDataIter();
                var valIter = new MXDataIter("ImageRecordIter")
                              .SetParam("path_imglist", "./data/val.lst")
                              .SetParam("path_imgrec", "./data/val.rec")
                              .SetParam("data_shape", new Shape(3, 256, 256))
                              .SetParam("batch_size", batchSize)
                              .CreateDataIter();

                var opt = OptimizerRegistry.Find("ccsgd");
                opt.SetParam("momentum", 0.9)
                .SetParam("rescale_grad", 1.0 / batchSize)
                .SetParam("clip_gradient", 10)
                .SetParam("lr", learningRate)
                .SetParam("wd", weightDecay);

                var accuracyTrain = new Accuracy();
                var accuracyVal   = new Accuracy();
                var loglossVal    = new LogLoss();
                for (var iter = 0; iter < maxEpo; ++iter)
                {
                    Logging.LG($"Train Epoch: {iter}");
                    /*reset the metric every epoch*/
                    accuracyTrain.Reset();
                    /*reset the data iter every epoch*/
                    trainIter.Reset();
                    while (trainIter.Next())
                    {
                        var batch = trainIter.GetDataBatch();
                        Logging.LG($"{trainIter.GetDataBatch().Index.Length}");
                        /*use copyto to feed new data and label to the executor*/
                        batch.Data.CopyTo(argmentDictionary["data"]);
                        batch.Label.CopyTo(argmentDictionary["label"]);
                        exec.Forward(true);
                        exec.Backward();
                        for (var i = 0; i < argNames.Count; ++i)
                        {
                            if (argNames[i] == "data" || argNames[i] == "label")
                            {
                                continue;
                            }
                            opt.Update(i, exec.ArgmentArrays[i], exec.GradientArrays[i]);
                        }

                        NDArray.WaitAll();
                        accuracyTrain.Update(batch.Label, exec.Outputs[0]);
                    }
                    Logging.LG($"ITER: {iter} Train Accuracy: {accuracyTrain.Get()}");

                    Logging.LG($"Val Epoch: {iter}");
                    accuracyVal.Reset();
                    valIter.Reset();
                    loglossVal.Reset();
                    while (valIter.Next())
                    {
                        var batch = valIter.GetDataBatch();
                        Logging.LG($"{valIter.GetDataBatch().Index.Length}");
                        batch.Data.CopyTo(argmentDictionary["data"]);
                        batch.Label.CopyTo(argmentDictionary["label"]);
                        exec.Forward(false);
                        NDArray.WaitAll();
                        accuracyVal.Update(batch.Label, exec.Outputs[0]);
                        loglossVal.Update(batch.Label, exec.Outputs[0]);
                    }
                    Logging.LG($"ITER: {iter} Val Accuracy: {accuracyVal.Get()}");
                    Logging.LG($"ITER: {iter} Val LogLoss: {loglossVal.Get()}");

                    /*save the parameters*/
                    var savePathParam = $"./model/alex_param_{iter}";
                    var saveArgs      = argmentDictionary;
                    /*we do not want to save the data and label*/
                    if (saveArgs.ContainsKey("data"))
                    {
                        saveArgs.Remove("data");
                    }
                    if (saveArgs.ContainsKey("label"))
                    {
                        saveArgs.Remove("label");
                    }

                    /*the alexnet does not get any aux array, so we do not need to save
                     * aux_map*/
                    Logging.LG($"ITER: {iter} Saving to...{savePathParam}");
                    NDArray.Save(savePathParam, saveArgs);
                }
                /*don't foget to release the executor*/
            }

            MXNet.MXNotifyShutdown();
        }
Ejemplo n.º 6
0
        private void Construct(SymbolList outputs, SymbolList inputs, ParameterDict @params, int[] num_filters, bool use_1x1 = true, bool use_upsample = true,
                               bool use_elewadd = true, bool use_p6        = false, bool p6_conv = true, bool no_bias       = true,
                               bool pretrained  = false, string norm_layer = null, FuncArgs norm_kwargs = null, Context ctx = null)
        {
            Symbol y_p6 = null;

            // e.g. For ResNet50, the feature is :
            // outputs = ['stage1_activation2', 'stage2_activation3',
            //            'stage3_activation5', 'stage4_activation2']
            // with regard to [conv2, conv3, conv4, conv5] -> [C2, C3, C4, C5]
            // append more layers with reversed order : [P5, P4, P3, P2]
            var y             = outputs.Last();
            var base_features = outputs.Take(outputs.Length - 1).ToArray();
            var num_stages    = num_filters.Length + 1;
            var weight_init   = new Xavier(rnd_type: "uniform", factor_type: "in", magnitude: 1);
            var tmp_outputs   = new List <Symbol>();

            // num_filter is 256 in ori paper
            for (int i = 0; i < base_features.Length; i++)
            {
                var bf = base_features[i];
                var f  = num_filters[i];
                if (i == 0)
                {
                    if (use_1x1)
                    {
                        y = sym.Convolution(y, weight_init.InitWeight("weight"), null, num_filter: f, kernel: new Shape(1, 1), pad: new Shape(0, 0), stride: new Shape(1, 1), no_bias: no_bias, symbol_name: $"P{num_stages - i}_conv_lat");

                        if (norm_layer != null)
                        {
                            if (norm_layer == "SyncBatchNorm")
                            {
                                norm_kwargs["key"]  = $"P{num_stages - i}_lat_bn";
                                norm_kwargs["name"] = $"P{num_stages - i}_lat_bn";
                            }

                            var bn = LayerUtils.NormLayer(norm_layer, norm_kwargs);

                            y = bn.Call(y);
                        }
                    }
                    if (use_p6 && p6_conv)
                    {
                        // method 2 : use conv (Deformable use this)
                        y_p6 = sym.Convolution(y, weight_init.InitWeight("weight"), null, num_filter: f, kernel: new Shape(3, 3), pad: new Shape(1, 1), stride: new Shape(2, 2), no_bias: no_bias, symbol_name: $"P{num_stages + 1}_conv1");
                        if (norm_layer != null)
                        {
                            if (norm_layer == "SyncBatchNorm")
                            {
                                norm_kwargs["key"]  = $"P{num_stages - i}_pre_bn";
                                norm_kwargs["name"] = $"P{num_stages - i}_pre_bn";
                            }

                            var bn = LayerUtils.NormLayer(norm_layer, norm_kwargs);
                            y_p6 = bn.Call(y_p6);
                        }
                    }
                }
                else
                {
                    if (use_1x1)
                    {
                        bf = sym.Convolution(bf, weight_init.InitWeight("weight"), null, num_filter: f, kernel: new Shape(1, 1), pad: new Shape(0, 0), stride: new Shape(1, 1), no_bias: no_bias, symbol_name: $"P{num_stages - i}_conv_lat");

                        if (norm_layer != null)
                        {
                            if (norm_layer == "SyncBatchNorm")
                            {
                                norm_kwargs["key"]  = $"P{num_stages - i}_conv1_bn";
                                norm_kwargs["name"] = $"P{num_stages - i}_conv1_bn";
                            }

                            var bn = LayerUtils.NormLayer(norm_layer, norm_kwargs);
                            bf = bn.Call(bf);
                        }
                    }
                    if (use_upsample)
                    {
                        y = sym.UpSampling(y, scale: 2, num_args: 1, sample_type: UpsamplingSampleType.Nearest, symbol_name: $"P{num_stages - i}_upsp");
                    }

                    if (use_elewadd)
                    {
                        // make two symbol alignment
                        // method 1 : mx.sym.Crop
                        // y = mx.sym.Crop(*[y, bf], name="P{}_clip".format(num_stages-i))
                        // method 2 : mx.sym.slice_like
                        y = sym.SliceLike(y, bf, axes: new Shape(2, 3), symbol_name: $"P{num_stages - i}_clip");
                        y = sym.ElemwiseAdd(bf, y, symbol_name: $"P{num_stages - i}_sum");
                    }
                }
                // Reduce the aliasing effect of upsampling described in ori paper
                var @out = sym.Convolution(y, weight_init.InitWeight("weight"), null, num_filter: f, kernel: new Shape(3, 3), pad: new Shape(1, 1), stride: new Shape(1, 1), no_bias: no_bias, symbol_name: $"P{num_stages - i}_conv1");
                if (i == 0 && use_p6 && !p6_conv)
                {
                    // method 2 : use max pool (Detectron use this)
                    y_p6 = sym.Pooling(@out, pool_type: PoolingType.Max, kernel: new Shape(1, 1), pad: new Shape(0, 0), stride: new Shape(2, 2), symbol_name: $"P{num_stages + 1}_pre");
                }
                if (norm_layer != null)
                {
                    if (norm_layer == "SyncBatchNorm")
                    {
                        norm_kwargs["key"]  = $"P{num_stages - i}_bn";
                        norm_kwargs["name"] = $"P{num_stages - i}_bn";
                    }

                    var bn = LayerUtils.NormLayer(norm_layer, norm_kwargs);
                    @out = bn.Call(@out);
                }

                tmp_outputs.Add(@out);
            }

            if (use_p6)
            {
                outputs = tmp_outputs.Take(tmp_outputs.Count - 1).ToList();
                outputs.Add(y_p6);
            }
            else
            {
                outputs = tmp_outputs.Take(tmp_outputs.Count - 1).ToList();
            }

            base.Construct(outputs, inputs, @params);
        }
Ejemplo n.º 7
0
    public void switchChar(Collider2D collin)
    {
        switch (collin.name)
        {
        case "CenterDiamond":
            //if (!CD.GetComponent<Collider2D>().isTrigger)
            //{
            //    CD.GetComponent<Collider2D>().isTrigger = true;
            //}
            makeAllDissapear();
            Leslie.SetActive(true);
            TextObject.GetComponentInChildren <Text>().text = "Leslie";
            curChar = SelectableCharacters.Leslie;
            break;

        case "NorthDiamond":
            makeAllDissapear();
            Jona.SetActive(true);
            TextObject.GetComponentInChildren <Text>().text = "Jona";
            curChar = SelectableCharacters.Jona;
            break;

        case "NorthEastDiamond":
            makeAllDissapear();
            Ashita.SetActive(true);
            TextObject.GetComponentInChildren <Text>().text = "Ashita";
            curChar = SelectableCharacters.Ashita;
            break;

        case "EastDiamond":
            makeAllDissapear();
            Catarine.SetActive(true);
            TextObject.GetComponentInChildren <Text>().text = "Catarine";
            curChar = SelectableCharacters.Catarine;
            break;

        case "SouthEastDiamond":
            makeAllDissapear();
            Ramsey.SetActive(true);
            TextObject.GetComponentInChildren <Text>().text = "Ramsey";
            curChar = SelectableCharacters.Ramsey;
            break;

        case "SouthDiamond":
            makeAllDissapear();
            Drogas.SetActive(true);
            TextObject.GetComponentInChildren <Text>().text = "Drogas";
            curChar = SelectableCharacters.Drogas;
            break;

        case "SouthWestDiamond":
            makeAllDissapear();
            Sylvia.SetActive(true);
            TextObject.GetComponentInChildren <Text>().text = "Sylvia";
            curChar = SelectableCharacters.Sylvia;
            break;

        case "WestDiamond":
            makeAllDissapear();
            Bjin.SetActive(true);
            TextObject.GetComponentInChildren <Text>().text = "Bjin";
            curChar = SelectableCharacters.Bjin;
            break;

        case "NorthWestDiamond":
            makeAllDissapear();
            Xavier.SetActive(true);
            TextObject.GetComponentInChildren <Text>().text = "Xavier";
            curChar = SelectableCharacters.Xavier;
            break;

        default:
            break;
        }
    }
Ejemplo n.º 8
0
    public void selectChar()
    {
        switch (curChar)
        {
        case SelectableCharacters.Leslie:
            TextObject.GetComponentInChildren <Text>().text = "Leslie Selected";
            Leslie.GetComponent <Image>().sprite            = SelectedImages[0];
            CD.GetComponent <Collider2D>().isTrigger        = false;
            break;

        case SelectableCharacters.Jona:
            TextObject.GetComponentInChildren <Text>().text = "Jona Selected";
            Jona.GetComponent <Image>().sprite       = SelectedImages[1];
            ND.GetComponent <Collider2D>().isTrigger = false;
            break;

        case SelectableCharacters.Ashita:
            TextObject.GetComponentInChildren <Text>().text = "Ashita Selected";
            Ashita.GetComponent <Image>().sprite            = SelectedImages[2];
            NED.GetComponent <Collider2D>().isTrigger       = false;
            break;

        case SelectableCharacters.Catarine:
            TextObject.GetComponentInChildren <Text>().text = "Catarine Selected";
            Catarine.GetComponent <Image>().sprite          = SelectedImages[3];
            ED.GetComponent <Collider2D>().isTrigger        = false;
            break;

        case SelectableCharacters.Ramsey:
            TextObject.GetComponentInChildren <Text>().text = "Ramsey Selected";
            Ramsey.GetComponent <Image>().sprite            = SelectedImages[4];
            SED.GetComponent <Collider2D>().isTrigger       = false;
            break;

        case SelectableCharacters.Drogas:
            TextObject.GetComponentInChildren <Text>().text = "Drogas Selected";
            Drogas.GetComponent <Image>().sprite            = SelectedImages[5];
            SD.GetComponent <Collider2D>().isTrigger        = false;
            break;

        case SelectableCharacters.Sylvia:
            TextObject.GetComponentInChildren <Text>().text = "Sylvia Selected";
            Sylvia.GetComponent <Image>().sprite            = SelectedImages[6];
            SWD.GetComponent <Collider2D>().isTrigger       = false;
            break;

        case SelectableCharacters.Bjin:
            TextObject.GetComponentInChildren <Text>().text = "Bjin Selected";
            Bjin.GetComponent <Image>().sprite       = SelectedImages[7];
            WD.GetComponent <Collider2D>().isTrigger = false;
            break;

        case SelectableCharacters.Xavier:
            TextObject.GetComponentInChildren <Text>().text = "Xavier Selected";
            Xavier.GetComponent <Image>().sprite            = SelectedImages[8];
            NWD.GetComponent <Collider2D>().isTrigger       = false;
            break;

        default:
            break;
        }
        characterChosen = true;
        weaponMenu();
    }