void Explode() { Driver best_time_obj = GameObject.Find("Floor").GetComponent <Driver>(); TyroData data = GetComponent <TyroData>(); float average_score = total_score / total_times_scored; if (average_score < data.current_tdata.best_score)//(data.current_tdata.best_time - (data.current_tdata.best_time * .3f) < Time.time - start_time) { //Debug.Log("New Best Time! \nOld Time: " + data.current_tdata.best_time + " - New Time: " + (Time.time - start_time)); Debug.Log("######### New best score: " + average_score + " - Old: " + data.current_tdata.best_score); data.current_tdata.best_time = (Time.time - start_time); data.current_tdata.best_score = average_score; // Destroy the visualization for that car so they don't stack data.Save(); } else { Debug.Log("Score: " + average_score); //current_tdata.current_tdata.best_time = (current_tdata.current_tdata.best_time * 10 + Time.time - start_time) / 11 ; } foreach (GameObject data_point in GameObject.FindGameObjectsWithTag("Datapoint")) { Destroy(data_point); } Destroy(this.gameObject); }
// Use this for initialization void Start() { learner = new OrdinaryLeastSquares() { UseIntercept = true }; data = GetComponent <TyroData>(); car = GetComponent <CarMovement>(); // Now, we can use the learner to finally estimate our model: if (Time.time > 10) { data.Mutate(); } regression = learner.Learn(data.current_tdata.input.ToArray(), data.current_tdata.output.ToArray()); }
// Use this for initialization void Start() { action = "Nothing"; data = GetComponent <TyroData>(); }