Ejemplo n.º 1
0
        public void SpeedTest()
        {
            int inwidth = 32, inheight = 32, inchannels = 33, outchannels = 33, ksize = 3, stride = 2;
            int outwidth = (inwidth - ksize) / stride + 1, outheight = (inheight - ksize) / stride + 1;

            OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map2D(outchannels, outwidth, outheight));
            OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel2D(inchannels / 3 * 4, outchannels / 3, ksize, ksize));

            OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map2D(inchannels, inwidth, inheight));

            TrivectorDeconvolution2D ope   = new TrivectorDeconvolution2D(inwidth, inheight, outchannels, inchannels, ksize, ksize, stride);

            ope.Execute(y_tensor, w_tensor, x_tensor);

            Stopwatch sw = new Stopwatch();

            sw.Start();

            ope.Execute(y_tensor, w_tensor, x_tensor);
            ope.Execute(y_tensor, w_tensor, x_tensor);
            ope.Execute(y_tensor, w_tensor, x_tensor);
            ope.Execute(y_tensor, w_tensor, x_tensor);

            sw.Stop();

            Console.WriteLine($"{sw.ElapsedMilliseconds / 4} msec");
        }
Ejemplo n.º 2
0
        public void OverflowTest()
        {
            foreach (bool gradmode in new bool[] { false, true })
            {
                foreach (int batch in new int[] { 1, 2, 3 })
                {
                    foreach (int inchannels in new int[] { 3, 6, 9, 12 })
                    {
                        foreach (int outchannels in new int[] { 3, 6, 9, 12 })
                        {
                            foreach (int kheight in new int[] { 1, 3, 5 })
                            {
                                foreach (int kwidth in new int[] { 1, 3, 5 })
                                {
                                    foreach (int stride in new int[] { 1, 2, 3 })
                                    {
                                        foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                        {
                                            foreach (int inheight in new int[] { 8, 9, 19, 23 })
                                            {
                                                int outwidth = (inwidth - kwidth) / stride + 1, outheight = (inheight - kheight) / stride + 1;

                                                float[] yval = (new float[outwidth * outheight * outchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                                float[] wval = (new float[kwidth * kheight * inchannels * outchannels / 9 * 4]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                                OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map2D(outchannels, outwidth, outheight, batch), yval);
                                                OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel2D(inchannels / 3 * 4, outchannels / 3, kwidth, kheight), wval);

                                                OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map2D(inchannels, inwidth, inheight, batch));

                                                TrivectorDeconvolution2D ope = new TrivectorDeconvolution2D(inwidth, inheight, outchannels, inchannels, kwidth, kheight, stride, gradmode, batch);

                                                ope.Execute(y_tensor, w_tensor, x_tensor);

                                                CollectionAssert.AreEqual(yval, y_tensor.State);
                                                CollectionAssert.AreEqual(wval, w_tensor.State);

                                                x_tensor.CheckOverflow();

                                                Console.WriteLine($"pass: {inchannels},{outchannels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch},{gradmode}");
                                            }
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
Ejemplo n.º 3
0
        public void ExecuteTest()
        {
            float max_err = 0;

            foreach (int batch in new int[] { 1, 2, 3 })
            {
                foreach (int inchannels in new int[] { 3, 6, 9, 12 })
                {
                    foreach (int outchannels in new int[] { 3, 6, 9, 12 })
                    {
                        foreach (int kheight in new int[] { 1, 3, 5 })
                        {
                            foreach (int kwidth in new int[] { 1, 3, 5 })
                            {
                                foreach (int stride in new int[] { 1, 2, 3 })
                                {
                                    foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                    {
                                        foreach (int inheight in new int[] { 8, 9, 19, 23 })
                                        {
                                            int outwidth = (inwidth - kwidth) / stride + 1, outheight = (inheight - kheight) / stride + 1;

                                            float[] yval = (new float[outwidth * outheight * outchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                            float[] wval = (new float[kwidth * kheight * inchannels * outchannels / 9 * 4]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                            Trivector[] ycval = (new Trivector[yval.Length / 3])
                                                                .Select((_, idx) => new Trivector(yval[idx * 3], yval[idx * 3 + 1], yval[idx * 3 + 2])).ToArray();

                                            Quaternion.Quaternion[] wcval = (new Quaternion.Quaternion[wval.Length / 4])
                                                                            .Select((_, idx) => new Quaternion.Quaternion(wval[idx * 4], wval[idx * 4 + 1], wval[idx * 4 + 2], wval[idx * 4 + 3])).ToArray();

                                            TrivectorMap2D y = new TrivectorMap2D(outchannels / 3, outwidth, outheight, batch, ycval);
                                            Quaternion.QuaternionFilter2D w = new Quaternion.QuaternionFilter2D(inchannels / 3, outchannels / 3, kwidth, kheight, wcval);

                                            TrivectorMap2D x = Reference(y, w, inwidth, inheight, kwidth, kheight, stride);

                                            OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map2D(outchannels, outwidth, outheight, batch), yval);
                                            OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel2D(inchannels / 3 * 4, outchannels / 3, kwidth, kheight), wval);

                                            OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map2D(inchannels, inwidth, inheight, batch));

                                            TrivectorDeconvolution2D ope = new TrivectorDeconvolution2D(inwidth, inheight, outchannels, inchannels, kwidth, kheight, stride, gradmode: false, batch);

                                            ope.Execute(y_tensor, w_tensor, x_tensor);

                                            float[] x_expect = x.ToArray();
                                            float[] x_actual = x_tensor.State;

                                            CollectionAssert.AreEqual(yval, y_tensor.State);
                                            CollectionAssert.AreEqual(wval, w_tensor.State);

                                            AssertError.Tolerance(x_expect, x_actual, 1e-7f, 1e-5f, ref max_err, $"mismatch value {inchannels},{outchannels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch}");

                                            Console.WriteLine($"pass: {inchannels},{outchannels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch}");
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }

            Console.WriteLine($"maxerr:{max_err}");
        }