Ejemplo n.º 1
0
        //------------- public functions -----------//

        /*
         * processing functions
         */
        public float[] process(float[] input)
        {
            //apply function y = f(Wx)
            //store local copy of the input and create space for bias
            ToolsCollection.CopyRBA(input, d_input);
            d_input[d_input_size - 1] = 1.0f;     //put in bias

            //calculate and store activation
            ToolsCollection.SetValue(d_activation, 0.0f);
            for (int o = 0; o < d_output_size; o++)
            {
                for (int i = 0; i < d_input_size; i++)
                {
                    d_activation[o] += d_weights[o, i] * d_input[i];
                }
            }
            //calculate and store output
            for (int o = 0; o < d_output_size; o++)
            {
                d_output[o] = d_output_function.Compute((float)d_activation[o]); //TODO double?
            }

            //and return the output to be processed by later layers
            return(d_output);
        }
Ejemplo n.º 2
0
        public float[] back_propagate(float[] out_error)
        {
            //only use after forward signal has been processed
            //store local copy of the output error
            d_output_error = ToolsCollection.Select(out_error, 0, d_output_size);     //will remove bias of next layer

            //calculate and store activation error
            for (int o = 0; o < d_output_size; o++)
            {
                activation_error[o] = d_output_function_derivative.Compute((float)d_activation[o]) * d_output_error[o];
            }

            //calculate and store the input error
            ToolsCollection.SetValue(input_error, 0);
            for (int i = 0; i < d_input_size; i++)
            {
                for (int o = 0; o < d_output_size; o++)
                {
                    input_error[i] += activation_error[o] * d_weights[o, i];
                }
            }
            //and return signal to be processed by previous layers
            return(input_error);
        }