Ejemplo n.º 1
0
        /// <returns> the 3 best {@link FinderPattern}s from our list of candidates. The "best" are
        /// those that have been detected at least {@link #CENTER_QUORUM} times, and whose module
        /// size differs from the average among those patterns the least
        /// </returns>
        /// <throws>  ReaderException if 3 such finder patterns do not exist </throws>
        private FinderPattern[] selectBestPatterns()
        {
            int startSize = possibleCenters.Count;

            if (startSize < 3)
            {
                // Couldn't find enough finder patterns
                throw ReaderException.Instance;
            }

            // Filter outlier possibilities whose module size is too different
            if (startSize > 3)
            {
                // But we can only afford to do so if we have at least 4 possibilities to choose from
                float totalModuleSize = 0.0f;
                for (int i = 0; i < startSize; i++)
                {
                    totalModuleSize += ((FinderPattern)possibleCenters[i]).EstimatedModuleSize;
                }
                //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
                float average = totalModuleSize / (float)startSize;
                for (int i = 0; i < possibleCenters.Count && possibleCenters.Count > 3; i++)
                {
                    FinderPattern pattern = (FinderPattern)possibleCenters[i];
                    if (System.Math.Abs(pattern.EstimatedModuleSize - average) > 0.2f * average)
                    {
                        possibleCenters.RemoveAt(i);
                        i--;
                    }
                }
            }

            if (possibleCenters.Count > 3)
            {
                // Throw away all but those first size candidate points we found.
                Collections.insertionSort(possibleCenters, new CenterComparator());
                SupportClass.SetCapacity(possibleCenters, 3);
            }

            return(new FinderPattern[] { (FinderPattern)possibleCenters[0], (FinderPattern)possibleCenters[1], (FinderPattern)possibleCenters[2] });
        }
Ejemplo n.º 2
0
        /// <summary> <p>Detects a Data Matrix Code in an image.</p>
        ///
        /// </summary>
        /// <returns> {@link DetectorResult} encapsulating results of detecting a QR Code
        /// </returns>
        /// <throws>  ReaderException if no Data Matrix Code can be found </throws>
        public DetectorResult detect()
        {
            ResultPoint[] cornerPoints = rectangleDetector.detect();
            ResultPoint   pointA       = cornerPoints[0];
            ResultPoint   pointB       = cornerPoints[1];
            ResultPoint   pointC       = cornerPoints[2];
            ResultPoint   pointD       = cornerPoints[3];

            // Point A and D are across the diagonal from one another,
            // as are B and C. Figure out which are the solid black lines
            // by counting transitions
            System.Collections.ArrayList transitions = System.Collections.ArrayList.Synchronized(new System.Collections.ArrayList(4));
            transitions.Add(transitionsBetween(pointA, pointB));
            transitions.Add(transitionsBetween(pointA, pointC));
            transitions.Add(transitionsBetween(pointB, pointD));
            transitions.Add(transitionsBetween(pointC, pointD));
            Collections.insertionSort(transitions, new ResultPointsAndTransitionsComparator());

            // Sort by number of transitions. First two will be the two solid sides; last two
            // will be the two alternating black/white sides
            ResultPointsAndTransitions lSideOne = (ResultPointsAndTransitions)transitions[0];
            ResultPointsAndTransitions lSideTwo = (ResultPointsAndTransitions)transitions[1];

            // Figure out which point is their intersection by tallying up the number of times we see the
            // endpoints in the four endpoints. One will show up twice.
            System.Collections.Hashtable pointCount = System.Collections.Hashtable.Synchronized(new System.Collections.Hashtable());
            increment(pointCount, lSideOne.From);
            increment(pointCount, lSideOne.To);
            increment(pointCount, lSideTwo.From);
            increment(pointCount, lSideTwo.To);

            ResultPoint maybeTopLeft     = null;
            ResultPoint bottomLeft       = null;
            ResultPoint maybeBottomRight = null;

            System.Collections.IEnumerator points = pointCount.Keys.GetEnumerator();
            //UPGRADE_TODO: Method 'java.util.Enumeration.hasMoreElements' was converted to 'System.Collections.IEnumerator.MoveNext' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationhasMoreElements'"
            while (points.MoveNext())
            {
                //UPGRADE_TODO: Method 'java.util.Enumeration.nextElement' was converted to 'System.Collections.IEnumerator.Current' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javautilEnumerationnextElement'"
                ResultPoint  point         = (ResultPoint)points.Current;
                System.Int32 value_Renamed = (System.Int32)pointCount[point];
                if (value_Renamed == 2)
                {
                    bottomLeft = point;                     // this is definitely the bottom left, then -- end of two L sides
                }
                else
                {
                    // Otherwise it's either top left or bottom right -- just assign the two arbitrarily now
                    if (maybeTopLeft == null)
                    {
                        maybeTopLeft = point;
                    }
                    else
                    {
                        maybeBottomRight = point;
                    }
                }
            }

            if (maybeTopLeft == null || bottomLeft == null || maybeBottomRight == null)
            {
                throw ReaderException.Instance;
            }

            // Bottom left is correct but top left and bottom right might be switched
            ResultPoint[] corners = new ResultPoint[] { maybeTopLeft, bottomLeft, maybeBottomRight };
            // Use the dot product trick to sort them out
            ResultPoint.orderBestPatterns(corners);

            // Now we know which is which:
            ResultPoint bottomRight = corners[0];

            bottomLeft = corners[1];
            ResultPoint topLeft = corners[2];

            // Which point didn't we find in relation to the "L" sides? that's the top right corner
            ResultPoint topRight;

            if (!pointCount.ContainsKey(pointA))
            {
                topRight = pointA;
            }
            else if (!pointCount.ContainsKey(pointB))
            {
                topRight = pointB;
            }
            else if (!pointCount.ContainsKey(pointC))
            {
                topRight = pointC;
            }
            else
            {
                topRight = pointD;
            }

            // Next determine the dimension by tracing along the top or right side and counting black/white
            // transitions. Since we start inside a black module, we should see a number of transitions
            // equal to 1 less than the code dimension. Well, actually 2 less, because we are going to
            // end on a black module:

            // The top right point is actually the corner of a module, which is one of the two black modules
            // adjacent to the white module at the top right. Tracing to that corner from either the top left
            // or bottom right should work here. The number of transitions could be higher than it should be
            // due to noise. So we try both and take the min.

            int dimension = System.Math.Min(transitionsBetween(topLeft, topRight).Transitions, transitionsBetween(bottomRight, topRight).Transitions);

            if ((dimension & 0x01) == 1)
            {
                // it can't be odd, so, round... up?
                dimension++;
            }
            dimension += 2;

            BitMatrix bits = sampleGrid(image, topLeft, bottomLeft, bottomRight, dimension);

            return(new DetectorResult(bits, new ResultPoint[] { pointA, pointB, pointC, pointD }));
        }
        /// <returns> the 3 best {@link FinderPattern}s from our list of candidates. The "best" are
        /// those that have been detected at least {@link #CENTER_QUORUM} times, and whose module
        /// size differs from the average among those patterns the least
        /// </returns>
        /// <throws>  ReaderException if 3 such finder patterns do not exist </throws>
        private FinderPattern[][] selectBestPatterns()
        {
            System.Collections.ArrayList possibleCenters = PossibleCenters;
            int size = possibleCenters.Count;

            if (size < 3)
            {
                // Couldn't find enough finder patterns
                throw ReaderException.Instance;
            }

            /*
             * Begin HE modifications to safely detect multiple codes of equal size
             */
            if (size == 3)
            {
                return(new FinderPattern[][] { new FinderPattern[] { (FinderPattern)possibleCenters[0], (FinderPattern)possibleCenters[1], (FinderPattern)possibleCenters[2] } });
            }

            // Sort by estimated module size to speed up the upcoming checks
            Collections.insertionSort(possibleCenters, new ModuleSizeComparator());

            /*
             * Now lets start: build a list of tuples of three finder locations that
             *  - feature similar module sizes
             *  - are placed in a distance so the estimated module count is within the QR specification
             *  - have similar distance between upper left/right and left top/bottom finder patterns
             *  - form a triangle with 90° angle (checked by comparing top right/bottom left distance
             *    with pythagoras)
             *
             * Note: we allow each point to be used for more than one code region: this might seem
             * counterintuitive at first, but the performance penalty is not that big. At this point,
             * we cannot make a good quality decision whether the three finders actually represent
             * a QR code, or are just by chance layouted so it looks like there might be a QR code there.
             * So, if the layout seems right, lets have the decoder try to decode.
             */

            System.Collections.ArrayList results = System.Collections.ArrayList.Synchronized(new System.Collections.ArrayList(10));             // holder for the results

            for (int i1 = 0; i1 < (size - 2); i1++)
            {
                FinderPattern p1 = (FinderPattern)possibleCenters[i1];
                if (p1 == null)
                {
                    continue;
                }

                for (int i2 = i1 + 1; i2 < (size - 1); i2++)
                {
                    FinderPattern p2 = (FinderPattern)possibleCenters[i2];
                    if (p2 == null)
                    {
                        continue;
                    }

                    // Compare the expected module sizes; if they are really off, skip
                    float vModSize12  = (p1.EstimatedModuleSize - p2.EstimatedModuleSize) / (System.Math.Min(p1.EstimatedModuleSize, p2.EstimatedModuleSize));
                    float vModSize12A = System.Math.Abs(p1.EstimatedModuleSize - p2.EstimatedModuleSize);
                    if (vModSize12A > DIFF_MODSIZE_CUTOFF && vModSize12 >= DIFF_MODSIZE_CUTOFF_PERCENT)
                    {
                        // break, since elements are ordered by the module size deviation there cannot be
                        // any more interesting elements for the given p1.
                        break;
                    }

                    for (int i3 = i2 + 1; i3 < size; i3++)
                    {
                        FinderPattern p3 = (FinderPattern)possibleCenters[i3];
                        if (p3 == null)
                        {
                            continue;
                        }

                        // Compare the expected module sizes; if they are really off, skip
                        float vModSize23  = (p2.EstimatedModuleSize - p3.EstimatedModuleSize) / (System.Math.Min(p2.EstimatedModuleSize, p3.EstimatedModuleSize));
                        float vModSize23A = System.Math.Abs(p2.EstimatedModuleSize - p3.EstimatedModuleSize);
                        if (vModSize23A > DIFF_MODSIZE_CUTOFF && vModSize23 >= DIFF_MODSIZE_CUTOFF_PERCENT)
                        {
                            // break, since elements are ordered by the module size deviation there cannot be
                            // any more interesting elements for the given p1.
                            break;
                        }

                        FinderPattern[] test = new FinderPattern[] { p1, p2, p3 };
                        ResultPoint.orderBestPatterns(test);

                        // Calculate the distances: a = topleft-bottomleft, b=topleft-topright, c = diagonal
                        FinderPatternInfo info = new FinderPatternInfo(test);
                        float             dA   = ResultPoint.distance(info.TopLeft, info.BottomLeft);
                        float             dC   = ResultPoint.distance(info.TopRight, info.BottomLeft);
                        float             dB   = ResultPoint.distance(info.TopLeft, info.TopRight);

                        // Check the sizes
                        float estimatedModuleCount = ((dA + dB) / p1.EstimatedModuleSize) / 2;
                        if (estimatedModuleCount > MAX_MODULE_COUNT_PER_EDGE || estimatedModuleCount < MIN_MODULE_COUNT_PER_EDGE)
                        {
                            continue;
                        }

                        // Calculate the difference of the edge lengths in percent
                        float vABBC = System.Math.Abs(((dA - dB) / System.Math.Min(dA, dB)));
                        if (vABBC >= 0.1f)
                        {
                            continue;
                        }

                        // Calculate the diagonal length by assuming a 90° angle at topleft
                        //UPGRADE_WARNING: Data types in Visual C# might be different.  Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1042'"
                        float dCpy = (float)System.Math.Sqrt(dA * dA + dB * dB);
                        // Compare to the real distance in %
                        float vPyC = System.Math.Abs(((dC - dCpy) / System.Math.Min(dC, dCpy)));

                        if (vPyC >= 0.1f)
                        {
                            continue;
                        }

                        // All tests passed!
                        results.Add(test);
                    }     // end iterate p3
                }         // end iterate p2
            }             // end iterate p1

            if (!(results.Count == 0))
            {
                FinderPattern[][] resultArray = new FinderPattern[results.Count][];
                for (int i = 0; i < results.Count; i++)
                {
                    resultArray[i] = (FinderPattern[])results[i];
                }
                return(resultArray);
            }

            // Nothing found!
            throw ReaderException.Instance;
        }