Ejemplo n.º 1
0
        private string ErrorInfoTSA(IFuzzySystem FS)
        {
            TSAFuzzySystem IFS = FS as TSAFuzzySystem;

            if (IFS.RulesDatabaseSet.Count < 1)
            {
                return("Точность нечеткой системы недоступна");
            }

            approxLearnResult.Add(IFS.approxLearnSamples(IFS.RulesDatabaseSet[0]));
            approxTestResult.Add(IFS.approxTestSamples(IFS.RulesDatabaseSet[0]));
            approxLearnResultMSE.Add(IFS.RMSEtoMSEforLearn(approxLearnResult[approxLearnResult.Count - 1]));
            approxTestResultMSE.Add(IFS.RMSEtoMSEforTest(approxTestResult[approxTestResult.Count - 1]));
            approxLearnResultMSEdiv2.Add(IFS.RMSEtoMSEdiv2forLearn(approxLearnResult[approxLearnResult.Count - 1]));
            approxTestResultMSEdiv2.Add(IFS.RMSEtoMSEdiv2forTest(approxTestResult[approxTestResult.Count - 1]));

            //    Console.WriteLine($"Time\t{IFS.sw.ElapsedMilliseconds} {Environment.NewLine }Ticks\t{IFS.sw.ElapsedTicks}");

            return("Точностью на обучающей выборке(RSME)  " + approxLearnResult[approxLearnResult.Count - 1].ToString() + " , Точность на тестовой выборке(RMSE)  " + approxTestResult[approxTestResult.Count - 1].ToString() + " " + Environment.NewLine +
                   "Точностью на обучающей выборке(MSE)  " + approxLearnResultMSE[approxLearnResultMSE.Count - 1].ToString() + " , Точность на тестовой выборке(MSE)  " + approxTestResultMSE[approxTestResultMSE.Count - 1].ToString() + " " + Environment.NewLine +
                   "Точностью на обучающей выборке(MSE/2)  " + approxLearnResultMSEdiv2[approxLearnResultMSEdiv2.Count - 1].ToString() + " , Точность на тестовой выборке(MSE/2)  " + approxTestResultMSEdiv2[approxTestResultMSEdiv2.Count - 1].ToString() + " " + Environment.NewLine);
        }
Ejemplo n.º 2
0
        private static void writeAboutEstimates(XmlWriter writer, TSAFuzzySystem Approximate)
        {
            writer.WriteStartElement("Estimates");
            if (Approximate.TestSamplesSet != null)
            {
                writer.WriteAttributeString("Count", XmlConvert.ToString(22));
                writer.WriteStartElement("Estimate");
                writer.WriteAttributeString("Table", Approximate.LearnSamplesSet.FileName);
                writer.WriteAttributeString("Type", "RMSE");
                writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.approxLearnSamples(Approximate.RulesDatabaseSet[0])));
                writer.WriteEndElement();
                writer.WriteStartElement("Estimate");
                writer.WriteAttributeString("Table", Approximate.LearnSamplesSet.FileName);
                writer.WriteAttributeString("Type", "MSE");
                writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.RMSEtoMSEforLearn(Approximate.approxLearnSamples(Approximate.RulesDatabaseSet[0]))));
                writer.WriteEndElement();
                writer.WriteStartElement("Estimate");
                writer.WriteAttributeString("Table", Approximate.TestSamplesSet.FileName);
                writer.WriteAttributeString("Type", "RMSE");
                writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.approxTestSamples(Approximate.RulesDatabaseSet[0])));
                writer.WriteEndElement();
                writer.WriteStartElement("Estimate");
                writer.WriteAttributeString("Table", Approximate.TestSamplesSet.FileName);
                writer.WriteAttributeString("Type", "MSE");
                writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.RMSEtoMSEforTest(Approximate.approxTestSamples(Approximate.RulesDatabaseSet[0]))));
                writer.WriteEndElement();
            }
            else
            {
                writer.WriteAttributeString("Count", XmlConvert.ToString(20));
                writer.WriteStartElement("Estimate");
                writer.WriteAttributeString("Table", Approximate.LearnSamplesSet.FileName);
                writer.WriteAttributeString("Type", "RMSE");
                writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.approxLearnSamples(Approximate.RulesDatabaseSet[0])));
                writer.WriteEndElement();
                writer.WriteStartElement("Estimate");
                writer.WriteAttributeString("Table", Approximate.LearnSamplesSet.FileName);
                writer.WriteAttributeString("Type", "MSE");
                writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.RMSEtoMSEforLearn(Approximate.approxLearnSamples(Approximate.RulesDatabaseSet[0]))));
                writer.WriteEndElement();
            }

            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "GIBNormal");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getGIBNormal()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "GIBSumStraigh");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getGIBSumStrait()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "GIBSumReverse");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getGIBSumReverse()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "GICNormal");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getGICNormal()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "GICSumStraigh");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getGICSumStraigth()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "GICSumReverse");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getGICSumReverce()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "GISNormal");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getGISNormal()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "GISSumStraigh");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getGISSumStraigt()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "GISSumReverce");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getGISSumReverce()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "LindisNormal");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getLindisNormal()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "LindisSumStraigh");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getLindisSumStraight()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "LindisSumReverse");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getLindisSumReverse()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "NormalIndex");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getNormalIndex()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "RealIndex");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getIndexReal()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "SumStraigthIndex");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getIndexSumStraigt()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "SumReverseIndex");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getIndexSumReverse()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "ComplexitIt");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getComplexit()));
            writer.WriteEndElement();
            writer.WriteStartElement("Estimate");
            writer.WriteAttributeString("Type", "CountRules");
            writer.WriteAttributeString("Value", XmlConvert.ToString(Approximate.getRulesCount()));
            writer.WriteEndElement();
            writer.WriteEndElement();
        }
Ejemplo n.º 3
0
        public override TSAFuzzySystem TuneUpFuzzySystem(TSAFuzzySystem Approx, ILearnAlgorithmConf conf) // Здесь ведется оптимизация вашим алгоритмом
        {
            theFuzzySystem = Approx;

            iterMax = ((gsa_conf)conf).Количество_итераций;
            MCount  = ((gsa_conf)conf).Количество_частиц;
            G0      = ((gsa_conf)conf).Гравитационная_постоянная;
            alpha   = ((gsa_conf)conf).Коэффициент_уменьшения;
            epsilon = ((gsa_conf)conf).Малая_константа;
            X       = new KnowlegeBaseTSARules[MCount];
            Errors  = new double[MCount];
            mass    = new double[MCount];
            double ErrorBest;
            KnowlegeBaseTSARules BestSolution;
            double minValue;
            int    iminIndex;
            KnowlegeBaseTSARules temp_c_Rule = new KnowlegeBaseTSARules(theFuzzySystem.RulesDatabaseSet[0]);

            X[0]      = temp_c_Rule;
            Errors[0] = theFuzzySystem.RMSEtoMSEforLearn(theFuzzySystem.approxLearnSamples(X[0]));
            double ErrorZero = Errors[0];

            ErrorBest    = ErrorZero;
            BestSolution = temp_c_Rule;
            //number = X[0].TermsSet.Count * X[0].TermsSet[0].Parametrs.Count();

            R     = new double[MCount][, , ];
            speed = new double[MCount, X[0].TermsSet.Count, X[0].TermsSet[0].Parametrs.Count()];

            for (int i = 0; i < MCount; i++)
            {
                R[i] = new double[MCount, X[0].TermsSet.Count, X[0].TermsSet[0].Parametrs.Count()];
            }
            RR = new double[MCount, MCount];
            a  = new double[MCount, X[0].TermsSet.Count, X[0].TermsSet[0].Parametrs.Count()];

            for (int i = 1; i < MCount; i++)
            {
                temp_c_Rule = new KnowlegeBaseTSARules(theFuzzySystem.RulesDatabaseSet[0]);
                X[i]        = temp_c_Rule;
                for (int j = 0; j < X[i].TermsSet.Count; j++)
                {
                    for (int k = 0; k < X[i].TermsSet[j].Parametrs.Count(); k++)
                    {
                        X[i].TermsSet[j].Parametrs[k] = GaussRandom.Random_gaussian(rand, X[i].TermsSet[j].Parametrs[k], 0.1 * (X[i].TermsSet[j].Parametrs[k])) + theFuzzySystem.LearnSamplesSet.InputAttributes[X[i].TermsSet[j].NumVar].Scatter * 0.05;
                    }
                }
                theFuzzySystem.RulesDatabaseSet.Add(X[i]);
                theFuzzySystem.UnlaidProtectionFix(theFuzzySystem.RulesDatabaseSet[theFuzzySystem.RulesDatabaseSet.Count - 1]);
                Errors[i] = theFuzzySystem.RMSEtoMSEforLearn(theFuzzySystem.approxLearnSamples(theFuzzySystem.RulesDatabaseSet[theFuzzySystem.RulesDatabaseSet.Count - 1]));

                X[i] = theFuzzySystem.RulesDatabaseSet[theFuzzySystem.RulesDatabaseSet.Count - 1];

                theFuzzySystem.RulesDatabaseSet.Remove(X[i]);
            }

            for (int iter = 0; iter < iterMax; iter++)
            {
                //g(t) = G(0)*e^(-a*t/T);
                G = G0 * Math.Pow(Math.E, ((-1) * alpha * iter / iterMax));

                /*  if (iter >= 100) {
                 *    Console.WriteLine("Wait");
                 * }*/
                algorithm();
                for (int r = 0; r < MCount; r++)
                {
                    theFuzzySystem.RulesDatabaseSet.Add(X[r]);
                    theFuzzySystem.UnlaidProtectionFix(theFuzzySystem.RulesDatabaseSet[theFuzzySystem.RulesDatabaseSet.Count - 1]);
                    Errors[r] = theFuzzySystem.RMSEtoMSEforLearn(theFuzzySystem.approxLearnSamples(theFuzzySystem.RulesDatabaseSet[theFuzzySystem.RulesDatabaseSet.Count - 1]));
                    X[r]      = theFuzzySystem.RulesDatabaseSet[theFuzzySystem.RulesDatabaseSet.Count - 1];
                    theFuzzySystem.RulesDatabaseSet.Remove(X[r]);
                }
                minValue  = Errors.Min();
                iminIndex = Errors.ToList().IndexOf(minValue);
                if (minValue < ErrorBest)
                {
                    ErrorBest    = minValue;
                    BestSolution = new KnowlegeBaseTSARules(X[iminIndex]);
                }
            }

            if (ErrorBest < ErrorZero)
            {
                theFuzzySystem.RulesDatabaseSet[0] = BestSolution;
            }

            return(theFuzzySystem);
        }
Ejemplo n.º 4
0
        private void weight()
        {
            double sum   = 0;
            double worst = mass[0];
            double best  = mass[0];

            int[] index = new Int32[MCount];
            int   count = 0;

            for (int i = 1; i < MCount; i++)
            {
                mass[i] = Errors[i];
                if (mass[i] > worst)
                {
                    worst = mass[i];
                }
                if (mass[i] < best)
                {
                    best = mass[i];
                }
            }
            for (int i = 0; i < MCount; i++)
            {
                if (mass[i] == worst)
                {
                    count++;
                    index[count - 1] = i;
                }
            }
            if (count > 1)
            {
                for (int i = 1; i < count; i++)
                {
                    ///X[index[i]] = ;
                    int f = index[i];
                    KnowlegeBaseTSARules temp_c_Rule = new KnowlegeBaseTSARules(theFuzzySystem.RulesDatabaseSet[0]);
                    temp_c_Rule = new KnowlegeBaseTSARules(theFuzzySystem.RulesDatabaseSet[0]);
                    X[f]        = temp_c_Rule;
                    for (int j = 0; j < X[f].TermsSet.Count; j++)
                    {
                        for (int k = 0; k < X[f].TermsSet[j].Parametrs.Count(); k++)
                        {
                            X[f].TermsSet[j].Parametrs[k] = GaussRandom.Random_gaussian(rand, X[f].TermsSet[j].Parametrs[k], 0.1 * (X[f].TermsSet[j].Parametrs[k])) + theFuzzySystem.LearnSamplesSet.InputAttributes[X[f].TermsSet[j].NumVar].Scatter * 0.05;
                        }
                    }
                    theFuzzySystem.RulesDatabaseSet.Add(X[f]);
                    theFuzzySystem.UnlaidProtectionFix(theFuzzySystem.RulesDatabaseSet[theFuzzySystem.RulesDatabaseSet.Count - 1]);
                    Errors[f] = theFuzzySystem.RMSEtoMSEforLearn(theFuzzySystem.approxLearnSamples(theFuzzySystem.RulesDatabaseSet[theFuzzySystem.RulesDatabaseSet.Count - 1]));
                    X[f]      = theFuzzySystem.RulesDatabaseSet[theFuzzySystem.RulesDatabaseSet.Count - 1];
                    theFuzzySystem.RulesDatabaseSet.Remove(X[f]);
                    mass[f] = Errors[f];
                    if (mass[f] > worst)
                    {
                        i--;
                    }
                }
            }
            for (int i = 0; i < MCount; i++)
            {
                mass[i] = (mass[i] - worst) / (best - worst);
                sum     = sum + mass[i];
            }
            for (int i = 0; i < MCount; i++)
            {
                mass[i] = mass[i] / sum;
            }
        }