Ejemplo n.º 1
0
        public void fit(double[][] input, double[][] target)
        {
            if (input.Length != target.Length)
            {
                throw new Exception("Input and target lengths differ");
            }

            Console.WriteLine("Partially fitting TF model on [{0}] inputs.", input.Length);
            int[] order = Enumerable.Range(0, input.Length).ToArray();
            for (int i = 0; i < trainingIterations; i++)
            {
                shuffleArray(order, new Random(random.Next()));
                for (int j = 0; j < (target.Length / batchSize) + 1; j++)
                {
                    fillbatch(j, order, input, target);

                    TFTensor tfInputBatch  = TFTensor.FromBuffer(new TFShape(new long[] { batchSize, inputDimension }), trainInputBatch, 0, batchSize * inputDimension);
                    TFTensor tfOutputBatch = TFTensor.FromBuffer(new TFShape(new long[] { batchSize, outputDimension }), trainOutputBatch, 0, batchSize * outputDimension);

                    session
                    .GetRunner()
                    .AddInput("input_node", tfInputBatch)
                    .AddInput("output_node", tfOutputBatch)
                    .AddTarget("train_node")
                    .Run();
                }
            }
        }
Ejemplo n.º 2
0
        /*
         * transform input image to tensor with shape: [1, widht, height, 3]
         */
        public static TFTensor TransformInput(Color32[] pic, int width, int height)
        {
            float[] floatValues = new float[width * height * 3];

            // order of image file which read by python cv.imread is BGR
            // and left -> right and top -> bottom
            for (int y = 0; y < height; y++)
            {
                for (int x = 0; x < width; x++)
                {
                    var color = pic[y * width + x];
                    int i     = (height - y - 1) * width + x; // for change bottom and top


                    // normalize pixel value ( pixel_value = ((pixel_value - mean_pixel_value) / 255))
                    floatValues[i * 3 + 0] = (float)((color.b - MEAN_PIXEL_BGR[0]) / IMAGE_STD);
                    floatValues[i * 3 + 1] = (float)((color.g - MEAN_PIXEL_BGR[1]) / IMAGE_STD);
                    floatValues[i * 3 + 2] = (float)((color.r - MEAN_PIXEL_BGR[2]) / IMAGE_STD);
                }
            }

            TFShape shape = new TFShape(1, width, height, 3);

            return(TFTensor.FromBuffer(shape, floatValues, 0, floatValues.Length));
        }
Ejemplo n.º 3
0
        public static TFTensor TensorFromBitmap(Bitmap image, ImageDims dims)
        {
            int   INPUT_SIZE = dims.InputSize;
            int   IMAGE_MEAN = dims.ImageMean;
            float IMAGE_STD  = dims.ImageStd;

            var bitmap = new Bitmap(image, INPUT_SIZE, INPUT_SIZE);

            Color[] colors = new Color[bitmap.Size.Width * bitmap.Size.Height];

            int z = 0;

            for (int y = bitmap.Size.Height - 1; y >= 0; y--)
            {
                for (int x = 0; x < bitmap.Size.Width; x++)
                {
                    colors[z] = bitmap.GetPixel(x, y);
                    z++;
                }
            }

            float[] floatValues = new float[(INPUT_SIZE * INPUT_SIZE) * 3];
            for (int i = 0; i < colors.Length; i++)
            {
                var color = colors[i];

                floatValues[i * 3]     = (color.R - IMAGE_MEAN) / IMAGE_STD;
                floatValues[i * 3 + 1] = (color.G - IMAGE_MEAN) / IMAGE_STD;
                floatValues[i * 3 + 2] = (color.B - IMAGE_MEAN) / IMAGE_STD;
            }

            TFShape shape = new TFShape(1, INPUT_SIZE, INPUT_SIZE, 3);

            return(TFTensor.FromBuffer(shape, floatValues, 0, floatValues.Length));
        }
Ejemplo n.º 4
0
        /// <summary>
        /// Make a prediction for a input image
        /// </summary>
        /// <param name="image">the input image</param>
        /// <returns></returns>
        public int Predict(float[,] im)
        {
            float[] image = TransformArray(im);
            //create a runner with the session
            var runner = _session.GetRunner();

            // create tensor using image
            var tensor = TFTensor.FromBuffer(new TFShape(1, 30, 30, 1), image, 0, image.Length);

            // set inputput layer
            runner.AddInput(_session.Graph[INPUT_NAME][0], tensor);

            // set output layer
            runner.Fetch(_session.Graph[OUTPUT_NAME][0]);

            // run the model
            var output = runner.Run();

            // Get output tensor
            TFTensor result = output[0];

            // get result from tensor
            var resultArray = result.GetValue() as float[, ];

            //return
            return(ExtractPrediction(resultArray));
        }
Ejemplo n.º 5
0
        private TFTensor GetWrittenDigit(int size)
        {
            RenderTargetBitmap b = new RenderTargetBitmap(
                (int)inkCanvas.ActualWidth, (int)inkCanvas.ActualHeight,
                96d, 96d, PixelFormats.Default
                );

            b.Render(inkCanvas);
            var bitmap = new WriteableBitmap(b)
                         .Resize(size, size, WriteableBitmapExtensions.Interpolation.Bilinear);

            float[] data = new float[size * size];
            for (int x = 0; x < bitmap.PixelWidth; x++)
            {
                for (int y = 0; y < bitmap.PixelHeight; y++)
                {
                    var color = bitmap.GetPixel(x, y);
                    data[y * bitmap.PixelWidth + x] = 255 - ((color.R + color.G + color.B) / 3);
                }
            }

            // sanity check
            Console.Write(Stringify(data));

            // normalize
            for (int i = 0; i < data.Length; i++)
            {
                data[i] /= 255;
            }

            return(TFTensor.FromBuffer(new TFShape(1, data.Length), data, 0, data.Length));
        }
        public static TFTensor GetImageTensor(Bitmap image, int imgWidth, int imgHeight)
        {
            int channels = 3;

            // System.out.println("width: " + imgWidth + ", height: " + imgHeight);
            // Generate image file to array
            int index = 0;

            float[] fb = new float[imgWidth * imgHeight * channels];
            // Convert image file to multi-dimension array

            for (int row = 0; row < imgHeight; row++)
            {
                for (int column = 0; column < imgWidth; column++)
                {
                    Color pixel = image.GetPixel(column, row);

                    float red   = pixel.R;
                    float green = pixel.G;
                    float blue  = pixel.B;
                    fb[index++] = red;
                    fb[index++] = green;
                    fb[index++] = blue;
                }
            }

            return(TFTensor.FromBuffer(new TFShape(new long[] { 1, imgHeight, imgWidth, channels }), fb, 0, fb.Length));
        }
Ejemplo n.º 7
0
    public static TFTensor GetFloatToTensor(float[] floatValues, int y, int x, int z)
    {
        TFShape shape  = new TFShape(1, y, x, z);
        var     tensor = TFTensor.FromBuffer(shape, floatValues, 0, floatValues.Length);

        return(tensor);
    }
Ejemplo n.º 8
0
        public double[][] predict(double[][] input)
        {
            double[] buffer = new double[input.Length * inputDimension];

            for (int i = 0; i < input.Length; i++)
            {
                for (int j = 0; j < inputDimension; j++)
                {
                    buffer[i * inputDimension + j] = input[i][j];
                }
            }

            var inputShape = new TFShape(new long[] { input.Length, inputDimension });

            TFTensor tfInput = TFTensor.FromBuffer(inputShape, buffer, 0, input.Length * inputDimension);

            TFTensor[] output = session
                                .GetRunner()
                                .AddInput("input_node", tfInput)
                                .Fetch("prediction_node_2")
                                .Run();

            TFTensor theFirstAndOnlyFetchedNode = output[0];
            bool     jagged = true;
            object   native_array_representation = theFirstAndOnlyFetchedNode.GetValue(jagged); // when jagged = true, returning expected dimensions of return

            double[][] typed = (double[][])native_array_representation;                         // typing to expected array with expected dimensions
            return(typed);
        }
Ejemplo n.º 9
0
    public static void SVD(float[,] covMat, out float[] s, out float[,] v)
    {
        TFShape shape       = new TFShape(covMat.GetLength(0), covMat.GetLength(1));
        var     reshaped    = covMat.Reshape();
        var     inputTensor = TFTensor.FromBuffer(shape, reshaped, 0, reshaped.Length);

        TFGraph  svdGraph  = new TFGraph();
        TFOutput input     = svdGraph.Placeholder(TFDataType.Float, shape);
        var      svdResult = (ValueTuple <TFOutput, TFOutput, TFOutput>)svdGraph.Svd(input, true);

        var sess   = new TFSession(svdGraph);
        var runner = sess.GetRunner();

        runner.AddInput(input, inputTensor);
        runner.Fetch(svdResult.Item1);
        runner.Fetch(svdResult.Item2);

        TFTensor[] results = runner.Run();
        s = (float[])results[0].GetValue();
        v = (float[, ])results[1].GetValue();
        TFStatus temp = new TFStatus();

        sess.CloseSession(temp);
        sess.DeleteSession(temp);
    }
Ejemplo n.º 10
0
        public float[] Predict(float[] input)
        {
            var tensor = TFTensor.FromBuffer(SingleShape, input, 0, input.Length);
            var ouptut = (float[][])Predict(tensor).GetValue(true);

            return(ouptut[0]); // Batch size is 1
        }
Ejemplo n.º 11
0
        public static TFTensor ToTFTensor <T>(this Tensor <T> tensor)
        {
            var dims     = tensor.Dimensions;
            var shapeArr = new long[dims.Length];

            for (int i = 0; i < dims.Length; i++)
            {
                shapeArr[i] = dims[i];
            }
            var shape = new TFShape(shapeArr);

            var count  = tensor.Dimensions.GetSize();
            var buffer = (object)tensor.ToDenseTensor().Buffer.ToArray();

            if (typeof(T) == typeof(int))
            {
                return(TFTensor.FromBuffer(shape, (int[])buffer, 0, count));
            }
            else if (typeof(T) == typeof(float))
            {
                return(TFTensor.FromBuffer(shape, (float[])buffer, 0, count));
            }
            else
            {
                throw new NotSupportedException();
            }
        }
    public static TFTensor TransformInput(Color32[] pic, int width, int height)
    {
        float[] floatValues = new float[width * height * 3];

        for (int i = 0; i < pic.Length; ++i)
        {
            var color = pic[i];

            floatValues[i * 3 + 0] = (color.r - 127.5f) / 127.0f;
            floatValues[i * 3 + 1] = (color.g - 127.5f) / 127.0f;
            floatValues[i * 3 + 2] = (color.b - 127.5f) / 127.0f;
        }

        // save image
        //Texture2D target = new Texture2D(224, 224);
        //target.SetPixels32();
        //target.Apply();
        //var img = target.EncodeToJPG();
        //System.IO.File.WriteAllBytes(Application.dataPath + "/captureImage.jpg", img);
        //Debug.Log("saved at: " + Application.dataPath);

        TFShape shape = new TFShape(1, width, height, 3);

        return(TFTensor.FromBuffer(shape, floatValues, 0, floatValues.Length));
    }
Ejemplo n.º 13
0
        static void Main(string[] args)
        {
            FileStream fs = new FileStream("E:\\SVN\\DeepLearning\\MNIST\\train-images.idx3-ubyte", FileMode.Open);

            fs.Position = 16;
            byte[] content = new byte[fs.Length - 16];
            fs.Read(content, 0, content.Length);
            fs.Close();

            var loaded = TFTensor.FromBuffer(new TFShape(60000, 28, 28, 1), content, 0, content.Length);

            using (var session = new TFSession())
            {
                var      graph = session.Graph;
                TFOutput input;
                TFOutput output;
                var(handle, flow) = graph.TensorArrayV3(graph.Const(1), TFDataType.Float, new TFShape(28, 28, 1), true);
                input             = graph.Placeholder(TFDataType.UInt8, new TFShape(60000, 28, 28, 1));
                output            = graph.TensorArraySplitV3(handle, graph.Div(graph.Cast(input, TFDataType.Float), graph.Const(255f)), graph.Const(new long[] { 60000L }), flow);     //output = handle;
                //output = graph.Cast(input, TFDataType.Float);
                var result = session.Run(new TFOutput[] { input }, new TFTensor[] { loaded }, new TFOutput[] { output });

                output = graph.TensorArrayReadV3(handle, graph.Const(0), flow, TFDataType.Float);
                result = session.Run(new TFOutput[] { }, new TFTensor[] { }, new TFOutput[] { output });
            }
        }
Ejemplo n.º 14
0
        // Convert the image in filename to a Tensor suitable as input to the Inception model.
        public static TFTensor CreateTensorFromImageFile(float[] contents, ShapeEnum resolution, TFDataType destinationDataType = TFDataType.Int32)
        {
            TFShape shape;

            if (resolution == ShapeEnum.TEN_TEN)
            {
                shape = new TFShape(1, 10, 10, 1);
            }
            else if (resolution == ShapeEnum.THIRTEEN_TEN)
            {
                shape = new TFShape(1, 13, 10, 1);
            }
            else if (resolution == ShapeEnum.EIGHT_EIGHT)
            {
                shape = new TFShape(1, 8, 8, 1);
            }
            else
            {
                shape = new TFShape(1, 10, 10, 1);
            }
            // DecodeJpeg uses a scalar String-valued tensor as input.
            var tensor = TFTensor.FromBuffer(shape, contents, 0, contents.Length);

            return(tensor);
        }
Ejemplo n.º 15
0
    public static TFTensor CreateTensorFromImageFile(string file)
    {
        var b      = new Bitmap(file, true);
        var bitmap = new Bitmap(b, INPUT_SIZE, INPUT_SIZE);

        Color[] colors = new Color[bitmap.Size.Width * bitmap.Size.Height];

        int z = 0;

        for (int y = bitmap.Size.Height - 1; y >= 0; y--)
        {
            for (int x = 0; x < bitmap.Size.Width; x++)
            {
                colors[z] = bitmap.GetPixel(x, y);
                z++;
            }
        }

        float[] floatValues = new float[(INPUT_SIZE * INPUT_SIZE) * 3];
        for (int i = 0; i < colors.Length; i++)
        {
            var color = colors[i];

            floatValues[i * 3]     = (color.R - IMAGE_MEAN) / IMAGE_STD;
            floatValues[i * 3 + 1] = (color.G - IMAGE_MEAN) / IMAGE_STD;
            floatValues[i * 3 + 2] = (color.B - IMAGE_MEAN) / IMAGE_STD;
        }

        TFShape shape = new TFShape(1, INPUT_SIZE, INPUT_SIZE, 3);

        return(TFTensor.FromBuffer(shape, floatValues, 0, floatValues.Length));
    }
Ejemplo n.º 16
0
        public void CreateTenso()
        {
            // Some input matrices


            var inp = new float[] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 96, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 27, 35, 55, 82, 115, 135, 140, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 77, 91, 106, 122, 136, 138, 127, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 112, 103, 95, 107, 121, 131, 131, 111, 90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 111, 112, 101, 91, 102, 121, 126, 126, 108, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 101, 107, 96, 88, 90, 108, 125, 130, 138, 173, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 102, 98, 88, 91, 96, 101, 120, 138, 146, 185, 243, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 88, 96, 93, 91, 92, 98, 111, 135, 153, 172, 221, 242, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90, 91, 93, 100, 107, 125, 153, 185, 210, 226, 237, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 126, 131, 140, 163, 188, 206, 216, 223, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 180, 188, 196, 202, 208, 216, 246, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 203, 203, 193, 200, 210, 233, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 227, 232, 222, 216, 231, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 233, 247, 242, 236, 246, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 151, 155, 0, 183, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

            Debug.WriteLine("TEST");
            for (int i = 0; i < inp.Length; i++)
            {
                if (inp[i] == 0)
                {
                    inp[i] = 255;
                }

                // inp[i] = inp[i] / 255;

                //Debug.WriteLine(inp[i]);
            }
            // Debug.WriteLine("len : " + inp.Length);

            var tensor = TFTensor.FromBuffer(new TFShape(1, 30, 30, 1), inp, 0, inp.Length);

            // Debug.WriteLine("input: " + tensor);

            using (var graph = new TFGraph())
            {
                // Load the model
                //  graph.Import(File.ReadAllBytes(@"C:\Users\Public\TestFolder\my_model.pb"));
                string model_file = Path.Combine(Environment.CurrentDirectory, @"model\gesture_model.pb");

                Debug.WriteLine("file path " + model_file);
                graph.Import(File.ReadAllBytes(model_file));


                using (var session = new TFSession(graph))
                {
                    var runner = session.GetRunner();
                    //Debug.WriteLine(graph);
                    runner.AddInput(graph[INPUT_NAME][0], tensor);
                    runner.Fetch(graph[OUTPUT_NAME][0]);
                    Debug.WriteLine(System.DateTime.Now);

                    var      output = runner.Run();
                    TFTensor result = output[0];
                    var      re     = result.GetValue() as float[, ];
                    foreach (float f in re)
                    {
                        Debug.WriteLine(f);
                    }
                    Debug.WriteLine("o: " + re[0, 1]);
                    Debug.WriteLine(result);
                    Debug.WriteLine(System.DateTime.Now);
                }
            }
        }
Ejemplo n.º 17
0
    public void LoadTFModel(Texture2D tex)
    {
        var      shape       = new TFShape(1, inputWidth, inputHeight, 3);
        var      input       = graph[inputName][0];
        TFTensor inputTensor = null;

        int  angle = 90;
        Flip flip  = Flip.NONE;

        if (input.OutputType == TFDataType.Float)
        {
            float[] imgData = Utils.DecodeTexture(tex, inputWidth, inputHeight,
                                                  inputMean, inputStd, angle, flip);
            inputTensor = TFTensor.FromBuffer(shape, imgData, 0, imgData.Length);
        }
        else if (input.OutputType == TFDataType.UInt8)
        {
            byte[] imgData = Utils.DecodeTexture(tex, inputWidth, inputHeight, angle, flip);
            inputTensor = TFTensor.FromBuffer(shape, imgData, 0, imgData.Length);
        }
        else
        {
            throw new Exception($"Input date type {input.OutputType} is not supported.");
        }

        var runner = session.GetRunner();

        runner.AddInput(input, inputTensor).Fetch(graph[outputName][0]);

        var output  = runner.Run()[0];
        var outputs = output.GetValue() as float[, ];

        inputTensor.Dispose();
        output.Dispose();

        var list = new List <KeyValuePair <string, float> >();

        for (int i = 0; i < labels.Length; i++)
        {
            var confidence = outputs[0, i];
            if (confidence < 0.05f)
            {
                continue;
            }

            list.Add(new KeyValuePair <string, float>(labels[i], confidence));
        }

        var results = list.OrderByDescending(i => i.Value).Take(3).ToList();

        foreach (KeyValuePair <string, float> value in results)
        {
            Debug.Log("my model: " + value.Key);
        }
    }
    private TFTensor GenerateTensor(byte[] image)
    {
#if UNITY_ANDROID
        TFShape tshape = new TFShape(1, 128, 128, 3);
        return(TFTensor.FromBuffer(tshape, image, 0, image.Length));
#endif
#if UNITY_EDITOR_WIN
        // TODO: This dosen't work
        return(ImageUtil.CreateTensorFromImageFile(image));
#endif
    }
Ejemplo n.º 19
0
        private static (TFTensor, TFTensor) CreateTestTensors()
        {
            var x = new int[] {
                1061, 19693, 974, 980, 981, 811, 11474, 589, 39, 1058, 39, 57,
                1057, 4934, 46, 1, 1, 1, 1, 1, 1, 1, 1
            };
            var l       = new int[] { 15 };
            var tensor  = TFTensor.FromBuffer(new TFShape(1, x.Length), x, 0, x.Length);
            var lengths = TFTensor.FromBuffer(new TFShape(1), l, 0, l.Length);

            return(tensor, lengths);
        }
Ejemplo n.º 20
0
    public IList Classify(Texture2D texture, int numResults = 5, float threshold = 0.1f,
                          int angle = 0, Flip flip = Flip.NONE)
    {
        var      shape       = new TFShape(1, inputWidth, inputHeight, 3);
        var      input       = graph[inputName][0];
        TFTensor inputTensor = null;

        if (input.OutputType == TFDataType.Float)
        {
            float[] imgData = Utils.DecodeTexture(texture, inputWidth, inputHeight,
                                                  inputMean, inputStd, angle, flip);
            inputTensor = TFTensor.FromBuffer(shape, imgData, 0, imgData.Length);
        }
        else if (input.OutputType == TFDataType.UInt8)
        {
            byte[] imgData = Utils.DecodeTexture(texture, inputWidth, inputHeight, angle, flip);
            inputTensor = TFTensor.FromBuffer(shape, imgData, 0, imgData.Length);
        }
        else
        {
            throw new Exception($"Input date type {input.OutputType} is not supported.");
        }

        var runner = session.GetRunner();

        runner.AddInput(input, inputTensor).Fetch(graph[outputName][0]);

        var output  = runner.Run()[0];
        var outputs = output.GetValue() as float[, ];

        inputTensor.Dispose();
        output.Dispose();

        var list = new List <KeyValuePair <string, float> >();

        for (int i = 0; i < labels.Length; i++)
        {
            var confidence = outputs[0, i];
            if (confidence < threshold)
            {
                continue;
            }

            list.Add(new KeyValuePair <string, float>(labels[i], confidence));
        }

        var results = list.OrderByDescending(i => i.Value).Take(numResults).ToList();

        //Utils.Log(results);

        return(results);
    }
Ejemplo n.º 21
0
    void ThreadedWork()
    {
        while (true)
        {
            if (pixelsUpdated)
            {
                TFShape shape = new TFShape(1, INPUT_SIZE, INPUT_SIZE, 3);
                //create a tensor from the image feed from webcam
                var tensor = TFTensor.FromBuffer(shape, pixels, 0, pixels.Length);

                //run a session with the graph.
                var runner = session.GetRunner();
                runner.AddInput(graph["image_tensor"][0], tensor).Fetch(
                    graph["detection_boxes"][0],
                    graph["detection_scores"][0],
                    graph["num_detections"][0],
                    graph["detection_classes"][0]);
                output = runner.Run();

                var boxes  = (float[, , ])output[0].GetValue(jagged: false);
                var scores = (float[, ])output[1].GetValue(jagged: false);
                var num    = (float[])output[2].GetValue(jagged: false);
                //int num = 2;
                var classes = (float[, ])output[3].GetValue(jagged: false);
                items.Clear();
                //loop through all detected objects
                for (int i = 0; i < num.Length; i++)
                {
                    //for (int i = 0; i < num; i++){
                    for (int j = 0; j < scores.GetLength(i); j++)
                    {
                        float score = scores[i, j];
                        if (score > MIN_SCORE)
                        {
                            CatalogItem catalogItem = _catalog.FirstOrDefault(item => item.Id == Convert.ToInt32(classes[i, j]));
                            catalogItem.Score = score;
                            float ymin = boxes[i, j, 0] * Screen.height;
                            float xmin = boxes[i, j, 1] * Screen.width;
                            float ymax = boxes[i, j, 2] * Screen.height;
                            float xmax = boxes[i, j, 3] * Screen.width;
                            catalogItem.Box = Rect.MinMaxRect(xmin, Screen.height - ymax, xmax, Screen.height - ymin);
                            items.Add(catalogItem);
                            Debug.Log(catalogItem.DisplayName);
                        }
                    }
                }
                pixelsUpdated = false;
            }
        }
    }
Ejemplo n.º 22
0
        public List <DetectionResult> RunDetection(int imgWidth, int imgHeight, byte[] img)
        {
            Debug.Assert(img.Length == imgWidth * imgHeight * 3);

            TFTensor tensor = TFTensor.FromBuffer(new TFShape(1, imgWidth, imgHeight, 3), img, 0, img.Length);

            TFTensor[] output;
            lock (_sessionLocker)
            {
                output = _session.Run(new[] { _graph["image_tensor"][0] }, new[] { tensor }, new[]
                {
                    _graph["detection_boxes"][0],
                    _graph["detection_scores"][0],
                    _graph["detection_classes"][0],
                    _graph["num_detections"][0]
                });
            }

            var boxes   = (float[, , ])output[0].GetValue();
            var scores  = (float[, ])output[1].GetValue();
            var classes = (float[, ])output[2].GetValue();
            var xsize   = boxes.GetLength(0);
            var ysize   = Math.Min(boxes.GetLength(1), 5); //HACK: too many results

            var results = new List <DetectionResult>();

            for (var i = 0; i < xsize; i++)
            {
                for (var j = 0; j < ysize; j++)
                {
                    var   top    = (int)(boxes[i, j, 0] * imgHeight);
                    var   left   = (int)(boxes[i, j, 1] * imgWidth);
                    var   bottom = (int)(boxes[i, j, 2] * imgHeight);
                    var   right  = (int)(boxes[i, j, 3] * imgWidth);
                    float score  = scores[i, j];
                    var   @class = Convert.ToInt32(classes[i, j]);

                    //if (score < 0.03) break; //HACK: too many results

                    results.Add(new DetectionResult
                    {
                        Box   = new BBox(top, left, bottom, right),
                        Score = score,
                        Class = @class
                    });
                }
            }

            return(results);
        }
Ejemplo n.º 23
0
        public double[] predict(double[] input)
        {
            TFTensor tfInput = TFTensor.FromBuffer(new TFShape(new long[] { 1, input.Length }), input, 0, input.Length);

            TFTensor[] output = session
                                .GetRunner()
                                .AddInput("input_node", tfInput)
                                .Fetch("prediction_node_2")
                                .Run();

            TFTensor theFirstAndOnlyFetchedNode = output[0];
            bool     jagged = true;
            object   native_array_representation = theFirstAndOnlyFetchedNode.GetValue(jagged); // when jagged = true, returning expected dimensions of return

            double[][] typed = (double[][])native_array_representation;                         // typing to expected array with expected dimensions
            return(typed[0]);                                                                   // only one input. so only first output is relevant
        }
Ejemplo n.º 24
0
    public static TFTensor TransformInput(Color32[] pic, int width, int height)
    {
        float[] floatValues = new float[width * height * 3];

        for (int i = 0; i < pic.Length; ++i)
        {
            var color = pic[i];

            floatValues[i * 3 + 0] = (color.r - IMAGE_MEAN) / IMAGE_STD;
            floatValues[i * 3 + 1] = (color.g - IMAGE_MEAN) / IMAGE_STD;
            floatValues[i * 3 + 2] = (color.b - IMAGE_MEAN) / IMAGE_STD;
        }

        TFShape shape = new TFShape(1, width, height, 3);

        return(TFTensor.FromBuffer(shape, floatValues, 0, floatValues.Length));
    }
Ejemplo n.º 25
0
    public TFTensor TransformInput(Color32[] pixels)
    {
        byte[] floatValues = new byte[_imageSize * _imageSize * 3];

        for (int i = 0; i < pixels.Length; ++i)
        {
            var color = pixels[i];

            floatValues[i * 3 + 0] = (byte)((color.r - _imageMean) / _imageScale);
            floatValues[i * 3 + 1] = (byte)((color.g - _imageMean) / _imageScale);
            floatValues[i * 3 + 2] = (byte)((color.b - _imageMean) / _imageScale);
        }

        var shape = new TFShape(1, _imageSize, _imageSize, 3);

        return(TFTensor.FromBuffer(shape, floatValues, 0, floatValues.Length));
    }
    public int PredictClass(Texture2D image)
    {
        Debug.Log(image);


        float[] imageBytes = new float[image.width * image.height * 3];

        int idx = 0;

        for (int i = 0; i < image.width; i++)
        {
            for (int j = 0; j < image.height; j++)
            {
                Color pixel = image.GetPixel(i, j);

                imageBytes[idx++] = pixel.r / 255.0f;
                imageBytes[idx++] = pixel.g / 255.0f;
                imageBytes[idx++] = pixel.b / 255.0f;
            }
        }


        var runner = session.GetRunner();

        runner
        .AddInput(graph["conv2d_1_input"][0], TFTensor.FromBuffer(new TFShape(new long[] { 1, 32, 32, 3 }), imageBytes, 0, 3072))
        .AddInput(graph["dropout_1/keras_learning_phase"][0], new TFTensor(TFDataType.Bool, new long[0], 1));

        runner.Fetch(graph["output_node0"][0]);
        float[,] recurrent_tensor = runner.Run()[0].GetValue() as float[, ];

        float maxVal  = float.MinValue;
        int   bestIdx = -1;

        for (int i = 0; i < recurrent_tensor.GetUpperBound(1); ++i)
        {
            float val = recurrent_tensor[0, i];
            if (val > maxVal)
            {
                maxVal  = val;
                bestIdx = i;
            }
        }

        return(bestIdx);
    }
Ejemplo n.º 27
0
        public float[] ScoreFIB(string prefix, string postfix, string[] choices)
        {
            int  num_steps  = (int)(_params["num_steps"]);      // Int32.Parse(_params["num_steps"]);
            int  num_layers = (int)(_params["num_layers"]);     // Int32.Parse(_params["num_layers"]);
            int  cell_size  = (int)(_params["cell_size"]);      // Int32.Parse(_params["cell_size"]);
            bool lowercase  = (bool)(_params["all_lowercase"]); // Boolean.Parse(_params["all_lowercase"]);
            int  multiplier = 2;
            int  batch_size = choices.Length;

            // generate state with prefix!
            // score choices + postfix in a single batch
            float[] result = new float[choices.Length];

            if (lowercase)
            {
                prefix = "<s>" + prefix.ToLower();
            }
            else
            {
                prefix = "<s>" + prefix;
            }
            Tuple <float, TFTensor> first_part = ScoreSentenceFast(prefix);

            float[] stateTensor = new float[multiplier * cell_size * num_layers * batch_size];
            TFShape stateShape  = new TFShape(num_layers, multiplier, batch_size, cell_size);

            int[]    sentenceTensor = new int[num_steps];
            TFShape  sentenceShape  = new TFShape(batch_size, num_steps);
            TFTensor state          = TFTensor.FromBuffer(stateShape, stateTensor, 0, stateTensor.Length);

            int[]   smeiTensor = new int[num_steps];
            TFShape smeiShape  = new TFShape(batch_size, num_steps);

            Dictionary <string, TFTensor> inputs = new Dictionary <string, TFTensor>();

            string[] outputs = { "output_single_sm", "final_state" };
            inputs["state"] = state;

            foreach (var choice in choices)
            {
                string sentence = choices + " " + postfix;
                var    tokens   = Utils.IndexText(_tokenizer.Tokenize(sentence), _vocab).ToArray();
            }

            return(result);
        }
Ejemplo n.º 28
0
    public static TFTensor TransformInput(Color32[] pic, int width, int height)
    {
        System.Array.Reverse(pic);
        float[] floatValues = new float[width * height * 3];
        //double sum = 0f;

        for (int i = 0; i < pic.Length; ++i)
        {
            var color = pic[i];
            floatValues [i * 3 + 0] = color.r * (2.0f / 255.0f) - 1.0f;
            floatValues [i * 3 + 1] = color.g * (2.0f / 255.0f) - 1.0f;
            floatValues [i * 3 + 2] = color.b * (2.0f / 255.0f) - 1.0f;
        }

        TFShape shape = new TFShape(1, width, height, 3);

        return(TFTensor.FromBuffer(shape, floatValues, 0, floatValues.Length));
    }
Ejemplo n.º 29
0
        public static IrisPrediction Predict(IrisFeatures features)
        {
            var data   = features.ToArray();
            var tensor = TFTensor.FromBuffer(new TFShape(1, data.Length), data, 0, data.Length);

            using (var graph = new TFGraph())
            {
                graph.Import(File.ReadAllBytes("keras_frozen.pb"));
                var session = new TFSession(graph);
                var runner  = session.GetRunner();
                runner.AddInput(graph["input_layer"][0], tensor);
                runner.Fetch(graph["output_layer/Softmax"][0]);
                var      output = runner.Run();
                TFTensor result = output[0];
                float[]  p      = ((float[][])result.GetValue(true))[0];
                return(IrisPrediction.FromArray(p));
            }
        }
Ejemplo n.º 30
0
        public static Tensor MatBgr2Tensor(Mat m, NormalizeMode mode = NormalizeMode.None, int resizeWidth = -1, int resizeHeight = -1, long[] shape = null, float[] imgbuffer = null)
        {
            if (resizeHeight != -1 && resizeWidth != -1)
            {
                m.Resize(new Size(resizeWidth, resizeHeight));
            }

            if (shape == null)
            {
                shape = new long[] { (int)m.Height, (int)m.Width, m.Channel };
            }

            float[] buffer = m.GetArray(imgbuffer);
            if (mode != NormalizeMode.None)
            {
                Vector <float> imgBuf = CreateVector.Dense(buffer);

                switch (mode)
                {
                case NormalizeMode.ZeroMean:
                    imgBuf.Divide(127.5f, imgBuf);
                    imgBuf.Subtract(1.0f, imgBuf);
                    break;

                case NormalizeMode.ZeroOne:
                    imgBuf.Divide(255.0f, imgBuf);
                    break;

                case NormalizeMode.CenterZero:
                    imgBuf.Subtract(imgBuf.Average(), imgBuf);
                    imgBuf.Divide((float)Statistics.StandardDeviation(imgBuf), imgBuf);
                    break;

                default:
                    throw new NotImplementedException("unknown one");
                }

                buffer = imgBuf.Storage.AsArray();
            }
            TFTensor tensor = TFTensor.FromBuffer(new TFShape(shape), buffer, 0, buffer.Length);

            return(new Tensor(tensor));
        }