Ejemplo n.º 1
0
        /// <summary>
        /// 基础矩阵运算
        /// </summary>
        public static void BasicMatrixOperation()
        {
            using (var s = new TFSession())
            {
                var g = s.Graph;

                //1x2矩阵
                var matrix1 = g.Const(new double[, ] {
                    { 1, 2 }
                });

                //2x1矩阵
                var matrix2 = g.Const(new double[, ] {
                    { 3 }, { 4 }
                });

                var product = g.MatMul(matrix1, matrix2);
                var result  = s.GetRunner().Run(product);
                Console.WriteLine("矩阵相乘的值:" + ((double[, ])result.GetValue())[0, 0]);

                // 矩阵相乘的值:11
            };
        }
Ejemplo n.º 2
0
        public bool Init(string filename, Dictionary <int, string> classes)
        {
            bool success = true;

            try
            {
                m_modelFile = filename;
                m_classes   = classes;

                m_graph = new TFGraph();
                byte[] model = File.ReadAllBytes(m_modelFile);
                m_graph.Import(new TFBuffer(model));

                m_session = new TFSession(m_graph);
            }
            catch (Exception ex)
            {
                m_lastErrorMsg = ex.Message;
                success        = false;
            }

            return(success);
        }
Ejemplo n.º 3
0
        public void nShould_Transpose(double [,] x)
        {
            using (var graph = new TFGraph())
                using (var session = new TFSession(graph)) {
                    TFOutput a = graph.Placeholder(TFDataType.Double, new TFShape(2));

                    TFOutput r = graph.Transpose(a);

                    TFTensor [] result = session.Run(new [] { a }, new TFTensor [] { x }, new [] { r });

                    double [,] actual   = (double [, ])result [0].GetValue();
                    double [,] expected = new double [x.GetLength(1), x.GetLength(0)];
                    for (int i = 0; i < expected.GetLength(0); i++)
                    {
                        for (int j = 0; j < expected.GetLength(1); j++)
                        {
                            expected [i, j] = x [j, i];
                        }
                    }

                    TestUtils.MatrixEqual(expected, actual, precision: 10);
                }
        }
Ejemplo n.º 4
0
    //to remove
    //private bool fond = false;
    //private string[] labels2;
    //private TFSession session2;
    //private TFGraph graph2;
    //public static Color32[] img32;
    //public TextAsset labelMap2;
    //public TextAsset model2;
    //private Thread modelThread2;

    // Use this for initialization
    void Start()
    {
#if UNITY_ANDROID
        TensorFlowSharp.Android.NativeBinding.Init();
#endif
        //load labels into string array
        labels = labelMap.ToString().Split('\n');

        //load graph
        graph = new TFGraph();
        graph.Import(model.bytes);
        session = new TFSession(graph);

        string[] lines = dictMap.text.Split("\n"[0]);
        d = new Dictionary <string, string>();
        foreach (string line in lines)
        {
            String[] strlist = line.Split(spearator);
            d.Add(strlist[0].ToLower().Trim(), strlist[1].Trim());
        }

        hc = new HelloClient();
    }
Ejemplo n.º 5
0
 public bool LoadModelFromPath(string modelPath)
 {
     if (_bModelLoaded)
         return true;
     Logger.Print("Load TF model from '{0}'", modelPath);
     byte[] bytes = File.ReadAllBytes(modelPath);
     if (bytes == null || bytes.Length == 0)
     {
         Logger.Error("TFModel.LoadModelFromPath - failed to load tf model from '{0}'", modelPath);
         return false;
     }
     try
     {
         _tfGraph.Import(bytes);
         _session = new TFSession(_tfGraph);
     }
     catch (Exception ex)
     {
         Logger.Exception(ex);
         return false;
     }
     return true;
 }
Ejemplo n.º 6
0
        public static TFTensor CreateTensorFromMemoryJpg(Byte[] jpeg, TFDataType destinationDataType = TFDataType.Float)
        {
            // DecodeJpeg uses a scalar String-valued tensor as input.

            var      tensor = TFTensor.CreateString(jpeg);
            TFOutput input;
            TFOutput output;

            // Construct a graph to normalize the image
            using (var graph = ConstructGraphToNormalizeImage2(out input, out output, destinationDataType))
            {
                // Execute that graph to normalize this one image
                using (var session = new TFSession(graph))
                {
                    var normalized = session.Run(
                        inputs: new[] { input },
                        inputValues: new[] { tensor },
                        outputs: new[] { output });

                    return(normalized[0]);
                }
            }
        }
Ejemplo n.º 7
0
        // Convert the image in filename to a Tensor suitable as input to the Inception model.
        static TFTensor CreateTensorFromImageFile(string file)
        {
            var contents = File.ReadAllBytes(file);

            // DecodeJpeg uses a scalar String-valued tensor as input.
            var tensor = TFTensor.CreateString(contents);

            TFGraph  graph;
            TFOutput input, output;

            // Construct a graph to normalize the image
            ConstructGraphToNormalizeImage(out graph, out input, out output);

            // Execute that graph to normalize this one image
            using (var session = new TFSession(graph)) {
                var normalized = session.Run(null,
                                             inputs: new [] { input },
                                             inputValues: new [] { tensor },
                                             outputs: new [] { output });

                return(normalized [0]);
            }
        }
Ejemplo n.º 8
0
        //初始化
        private static void InitVariable(TFGraph g, TFSession sess)
        {
            Console.WriteLine("。。。。。。。。。。。。。。。。。初始化。。。。。。。。。。。。。。。。。。");
            TFStatus status = new TFStatus();

            var a = g.VariableV2(TFShape.Scalar, TFDataType.Double);

            var initA = g.Assign(a, g.Const(1.5));

            var b = g.VariableV2(new TFShape(99), TFDataType.Int32);

            //var initB = g.Assign(b, g.Range(g.Const(1),g.Const(5)));
            var initB = g.Assign(b, g.Range(g.Const(1), g.Const(100)));
            var run   = sess.GetRunner();

            run.AddTarget(initA.Operation, initB.Operation).Run(status);
            Console.WriteLine(status.StatusCode);

            var res = run.Fetch(a, b).Run();

            Console.WriteLine(res[0].GetValue());
            Console.WriteLine(string.Join(",", (int[])res[1].GetValue()));
        }
Ejemplo n.º 9
0
        //基础常量运算,演示了常量的使用
        static void BasicOperation()
        {
            using (var s = new TFSession())
            {
                var g = s.Graph;

                //建立两个TFOutput,都是常数
                var v1 = g.Const(1.5);
                var v2 = g.Const(0.5);

                //建立一个相加的运算
                var add = g.Add(v1, v2);

                //获得runner
                var runner = s.GetRunner();

                //相加
                var result = runner.Run(add);

                //获得result的值2
                Console.WriteLine($"相加的结果:{result.GetValue()}");
            }
        }
Ejemplo n.º 10
0
        public void StringTestWithMultiDimStringTensorAsInputAndScalarStringAsOutput()
        {
            using (var graph = new TFGraph())
                using (var session = new TFSession(graph))
                {
                    var X         = graph.Placeholder(TFDataType.String, new TFShape(-1));
                    var delimiter = graph.Const(TFTensor.CreateString(Encoding.UTF8.GetBytes("/")));
                    var indices   = graph.Const(0);
                    var Y         = graph.ReduceJoin(graph.StringSplit(X, delimiter).values, indices, separator: " ");

                    var dataX = new string[] { "Thank/you/very/much!.", "I/am/grateful/to/you.", "So/nice/of/you." };
                    var bytes = new byte[dataX.Length][];
                    bytes[0] = Encoding.UTF8.GetBytes(dataX[0]);
                    bytes[1] = Encoding.UTF8.GetBytes(dataX[1]);
                    bytes[2] = Encoding.UTF8.GetBytes(dataX[2]);
                    var tensorX = TFTensor.CreateString(bytes, new TFShape(3));

                    var outputTensors = session.Run(new TFOutput[] { X }, new TFTensor[] { tensorX }, new[] { Y });

                    var outputY = Encoding.UTF8.GetString(TFTensor.DecodeString(outputTensors[0]));
                    Assert.Equal(string.Join(" ", dataX).Replace("/", " "), outputY);
                }
        }
Ejemplo n.º 11
0
        // Convert the image in filename to a Tensor suitable as input to the Inception model.
        public static TFTensor CreateTensorFromImageFile(string file, TFDataType destinationDataType = TFDataType.Float)
        {
            var contents = File.ReadAllBytes(file);

            // DecodeJpeg uses a scalar String-valued tensor as input.
            var tensor = TFTensor.CreateString(contents);

            // Construct a graph to normalize the image
            using (var graph =
                       ConstructGraphToNormalizeImage(out TFOutput input, out TFOutput output, destinationDataType))
            {
                // Execute that graph to normalize this one image
                using (var session = new TFSession(graph))
                {
                    var normalized = session.Run(
                        inputs: new[] { input },
                        inputValues: new[] { tensor },
                        outputs: new[] { output });

                    return(normalized[0]);
                }
            }
        }
Ejemplo n.º 12
0
        public void ComputeGradientMSE()
        {
            using (var graph = new TFGraph())
                using (var session = new TFSession(graph))
                {
                    var X = graph.Const(5.5f);
                    var Y = graph.Const(2.09f);

                    var W    = graph.Const(0.1078f);
                    var b    = graph.Const(0.1021f);
                    var pred = graph.Add(graph.Mul(X, W, "x_w"), b);

                    var cost = graph.Div(graph.ReduceSum(graph.Pow(graph.Sub(pred, Y), graph.Const(2f))), graph.Mul(graph.Const(2f), graph.Const((float)17), "2_n_samples"));

                    var g = graph.AddGradients(new TFOutput[] { cost }, new[] { W });

                    var r = session.Run(new TFOutput[] { }, new TFTensor[] {  }, new TFOutput[] { cost, g[0] });
                    var d = (float)r[0].GetValue();
                    Assert.InRange(d, 0.057236027 - _tolerance, 0.057236027 + _tolerance);
                    d = (float)r[1].GetValue();
                    Assert.InRange(d, -0.4513235 - _tolerance, -0.4513235 + _tolerance);
                }
        }
Ejemplo n.º 13
0
        //
        // Port of https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py
        //
        void LinearRegression()
        {
            Console.WriteLine("Linear regression");
            // Parameters
            var learning_rate   = 0.01;
            var training_epochs = 1000;
            var display_step    = 50;

            // Training data
            var train_x = new double [] {
                3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167,
                7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1
            };
            var train_y = new double [] {
                1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221,
                2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3
            };
            var n_samples = train_x.Length;

            using (var g = new TFGraph()) {
                var s   = new TFSession(g);
                var rng = new Random();
                // tf Graph Input

                var X    = g.Placeholder(TFDataType.Float);
                var Y    = g.Placeholder(TFDataType.Float);
                var W    = g.Variable(g.Const(rng.Next()), operName: "weight");
                var b    = g.Variable(g.Const(rng.Next()), operName: "bias");
                var pred = g.Add(g.Mul(X, W), b);

                var cost = g.Div(g.ReduceSum(g.Pow(g.Sub(pred, Y), g.Const(2))), g.Mul(g.Const(2), g.Const(n_samples)));

                // STuck here: TensorFlow bindings need to surface gradient support
                // waiting on Google for this
                // https://github.com/migueldeicaza/TensorFlowSharp/issues/25
            }
        }
Ejemplo n.º 14
0
        public float Detect(Color32[] data)
        {
            using (var session = new TFSession(this.graph))
            {
                using (var tensor_input_image = TransformInput(data, inputSize, inputSize))
                {
                    var runner = session.GetRunner();
                    runner.AddInput(this.graph[INPUT_NODE_NAME][0], tensor_input_image)
                    .Fetch(graph[OUTPUT_NODE_NAME][0]);
                    UnityEngine.Debug.Log("runner.Run()");
                    var output = runner.Run();

                    // change tensor output to float array
                    // netout shape is [1, NUM_CLASSES]
                    var tmp = (float[, ])output[0].GetValue(jagged: false);

                    List <float> netout = new List <float>()
                    {
                    };

                    for (int i = 0; i < NUM_CLASSES; i++)
                    {
                        netout.Add(tmp[0, i]);
                    }
                    var sorted = netout.Select((x, i) => new KeyValuePair <float, int>(x, i))
                                 .OrderBy(x => - x.Key)
                                 .ToList();
                    List <int> sorted_idx = sorted.Select(x => x.Value).ToList();

                    var first_idx  = sorted_idx[0];
                    var second_idx = sorted_idx[1];
                    var third_idx  = sorted_idx[2];
                    return((second_idx * 10 * netout[second_idx]) + (third_idx * 10 * netout[third_idx]) +
                           (first_idx * 10 * (1 - netout[second_idx] - netout[third_idx])));
                }
            }
        }
        public 图片转换成张量类()
        {
            graph1 = new TFGraph();

            input = graph1.Placeholder(TFDataType.String);

            //output = graph1.ResizeBilinear(
            //    images: graph1.ExpandDims(
            //        input: graph1.Cast(
            //            graph1.DecodeJpeg(contents: input, channels: 3), DstT: TFDataType.Float),
            //        dim: graph1.Const(0, "make_batch")),
            //    size: graph1.Const(new int[] { 208, 208 }, "size"));

            //ResizeBilinear: 图像缩放,双线性插值 - 图像中心对齐
            //ExpandDims: 想要维度增加一维
            //Cast:tf.cast 类型转换 函数
            //DecodeJpeg:预处理 尺寸调整 decode_jpeg函数


            output = graph1.ResizeBilinear(
                images: graph1.ExpandDims(
                    input: graph1.Div(
                        x: graph1.Cast(
                            x: graph1.DecodeJpeg(
                                contents: input,
                                channels: 3),
                            DstT: TFDataType.Float),
                        y: graph1.Const((float)255, "div")),
                    dim: graph1.Const(0, "make_batch")),
                size: graph1.Const(new int[] { 208, 208 }, "size"));



            session = new TFSession(graph1);
            //runner = session.GetRunner();
            //runner.Fetch(output);
        }
Ejemplo n.º 16
0
        public void TestParametersWithIndexes()
        {
            Console.WriteLine("Testing Parameters with indexes");
            var status = new TFStatus();

            using (var g = new TFGraph())
            {
                var s = new TFSession(g, status);

                var split = new TFOperationDesc(g, "Split", "Split")
                            .AddInput(ScalarConst(0, g, status)[0])
                            .AddInput(ScalarConst(new TFTensor(new int[] { 1, 2, 3, 4 }), g, status, "array")[0])
                            .SetAttr("num_split", 2)
                            .FinishOperation();
                var add = new TFOperationDesc(g, "Add", "Add")
                          .AddInput(split[0]).AddInput(split[1]).FinishOperation()[0];

                // fetch using colon separated names
                var fetched = s.GetRunner().Fetch("Split:1").Run()[0];
                var vals    = fetched.GetValue() as int[];
                if (vals[0] != 3 || vals[1] != 4)
                {
                    throw new Exception("Expected the values 3 and 4");
                }

                // Add inputs using colon separated names.
                var t   = new TFTensor(new int[] { 4, 3, 2, 1 });
                var ret = (s.GetRunner().AddInput("Split:0", t).AddInput("Split:1", t).Fetch("Add").Run()).GetValue(0) as TFTensor;
                var val = ret.GetValue() as int[];

                if (val[0] != 8 || val[1] != 6 || val[2] != 4 || val[3] != 2)
                {
                    throw new Exception("Expected 8, 6, 4, 2");
                }
            }
            Console.WriteLine("success");
        }
Ejemplo n.º 17
0
    void Start()
    {
        TextAsset graphModel = Resources.Load("frozen_model") as TextAsset;
        var       graph      = new TFGraph();

        graph.Import(graphModel.bytes);
        var session = new TFSession(graph);

        Texture2D image = Resources.Load(imageName) as Texture2D;

        image = scaled(image, ImageSize, ImageSize);
        var tensor = TransformInput(image.GetPixels32(), ImageSize, ImageSize);

        var runner = session.GetRunner();

        runner.AddInput(graph ["image"] [0], tensor);
        runner.Fetch(
            graph ["heatmap"] [0],
            graph ["offset_2"] [0],
            graph ["displacement_fwd_2"] [0],
            graph ["displacement_bwd_2"] [0]
            );
        var result           = runner.Run();
        var heatmap          = (float [, , , ])result [0].GetValue(jagged: false);
        var offsets          = (float [, , , ])result [1].GetValue(jagged: false);
        var displacementsFwd = (float [, , , ])result [2].GetValue(jagged: false);
        var displacementsBwd = (float [, , , ])result [3].GetValue(jagged: false);

        //Debug.Log(mean(heatmap));

        poses = posenet.DecodeMultiplePoses(
            heatmap, offsets,
            displacementsFwd,
            displacementsBwd,
            outputStride: 16, maxPoseDetections: 15,
            scoreThreshold: 0.5f, nmsRadius: 20);
    }
Ejemplo n.º 18
0
        public static TFTensor CreateTensorFromBGR(Byte[] rgb, TFDataType destinationDataType = TFDataType.Float)
        {
            // DecodeJpeg uses a scalar String-valued tensor as input.
            //var tensor = TFTensor.CreateString(bgr);

            /*
             *        byte[] floatValues = new byte[640 * 480 * 3];
             *        int j = 0;
             *        for (int i = 0; i < rgb.Length/4; i++)
             *        {
             *            floatValues[j * 3 + 0] = (rgb[i * 4 + 0]) ;
             *            floatValues[j * 3 + 1] = (rgb[i * 4 + 1]) ;
             *            floatValues[j * 3 + 2] = (rgb[i * 4 + 2]) ;
             *            j++;
             *        }*/

            TFShape shape = new TFShape(480, 640, 3);

            var      tensor = TFTensor.FromBuffer(shape, rgb, 0, rgb.Length);
            TFOutput input;
            TFOutput output;

            // Construct a graph to normalize the image
            using (var graph = ConstructGraphToNormalizeImage(out input, out output, destinationDataType))
            {
                // Execute that graph to normalize this one image
                using (var session = new TFSession(graph))
                {
                    var normalized = session.Run(
                        inputs: new[] { input },
                        inputValues: new[] { tensor },
                        outputs: new[] { output });

                    return(normalized[0]);
                }
            }
        }
Ejemplo n.º 19
0
        public void BasicConstantOps()
        {
            using (TFGraph g = new TFGraph())
                using (TFSession s = new TFSession(g))
                {
                    var a = g.Const(2);
                    Assert.NotNull(a);
                    Assert.Equal(TFDataType.Int32, a.OutputType);

                    var b = g.Const(3);
                    Assert.NotNull(b);
                    Assert.Equal(TFDataType.Int32, b.OutputType);

                    // Add two constants
                    var results = s.GetRunner().Run(g.Add(a, b));

                    Assert.NotNull(results);
                    Assert.IsType <TFTensor>(results);
                    Assert.Equal(TFDataType.Int32, results.TensorType);
                    Assert.Equal(0, results.NumDims);
                    Assert.Equal(0, results.Shape.Length);

                    var val = results.GetValue();
                    Assert.NotNull(val);
                    Assert.Equal(5, val);

                    // Multiply two constants
                    results = s.GetRunner().Run(g.Mul(a, b));
                    Assert.NotNull(results);
                    Assert.IsType <TFTensor>(results);
                    Assert.Equal(TFDataType.Int32, results.TensorType);
                    Assert.Equal(0, results.NumDims);
                    Assert.Equal(0, results.Shape.Length);
                    Assert.NotNull(results.GetValue());
                    Assert.Equal(6, results.GetValue());
                }
        }
Ejemplo n.º 20
0
        static void Main(string[] args)
        {
            // 创建图
            var g = new TFGraph();

            // 定义操作,用于初始化变量
            TFOperation init;

            // 定义值,用于保存变量的值
            TFOutput value;

            // 定义一个变量,初始值为1.5
            var a = g.Variable(g.Const(1.5), out init, out value);

            // 定义一个常量,表示每次循环变量增加值
            var inc = g.Const(0.5);

            // 定义一个操作,将变量a的值value加上inc,然后赋值给a
            var update = g.AssignVariableOp(a, g.Add(value, inc));

            // 会话
            var sess = new TFSession(g);

            // 变量使用前一定要初始化
            sess.GetRunner().AddTarget(init).Run();

            for (var i = 0; i < 5; i++)
            {
                // 每次执行更新操作,都取出value的值存放到result中
                // Fetch可以一次取出多个值
                var result = sess.GetRunner().Fetch(value).AddTarget(update).Run();

                // 输出每次循环变量的值
                Console.WriteLine("result {0}:{1}", i, result[0].GetValue());
            }
        }
Ejemplo n.º 21
0
        static void Main(string[] args)
        {
            using (var session = new TFSession())
            {
                var graph = session.Graph;

                var a = graph.Const(2);
                var b = graph.Const(3);
                Console.WriteLine("a=2 b=3");

                // Add two constants
                var addingResults     = session.GetRunner().Run(graph.Add(a, b));
                var addingResultValue = addingResults.GetValue();
                Console.WriteLine("a+b={0}", addingResultValue);

                // Multiply two constants
                var multiplyResults     = session.GetRunner().Run(graph.Mul(a, b));
                var multiplyResultValue = multiplyResults.GetValue();
                Console.WriteLine("a*b={0}", multiplyResultValue);

                Console.WriteLine("All Setup");
                Console.ReadKey();
            }
        }
Ejemplo n.º 22
0
        void BasicMatrix()
        {
            Console.WriteLine("Basic matrix");
            using (var g = new TFGraph()) {
                var s = new TFSession(g);

                // 1x2 matrix
                var matrix1 = g.Const(new double [, ] {
                    { 3, 3 }
                });
                // 2x1 matrix
                var matrix2 = g.Const(new double [, ] {
                    { 2 }, { 2 }
                });

                // multiply
                var product = g.MatMul(matrix1, matrix2);


                var result = s.GetRunner().Run(product);
                Console.WriteLine("Tensor ToString=" + result);
                Console.WriteLine("Value [0,0]=" + ((double[, ])result.GetValue())[0, 0]);
            };
        }
Ejemplo n.º 23
0
        void BasicMultidimensionalArray()
        {
            Console.WriteLine("Basic multidimensional array");
            using (var g = new TFGraph()) {
                var s = new TFSession(g);

                var var_a = g.Placeholder(TFDataType.Int32);
                var mul   = g.Mul(var_a, g.Const(2));

                var a = new int[, , ] {
                    { { 0, 1 }, { 2, 3 } }, { { 4, 5 }, { 6, 7 } }
                };
                var result = s.GetRunner().AddInput(var_a, a).Fetch(mul).Run() [0];

                var actual   = (int[, , ])result.GetValue();
                var expected = new int[, , ] {
                    { { 0, 2 }, { 4, 6 } }, { { 8, 10 }, { 12, 14 } }
                };

                Console.WriteLine("Actual:   " + RowOrderJoin(actual));
                Console.WriteLine("Expected: " + RowOrderJoin(expected));
                Assert(expected.Cast <int> ().SequenceEqual(actual.Cast <int> ()));
            };
        }
Ejemplo n.º 24
0
        public void Should_ClipByAverageNorm(double[,] m, double norm, int axis, double[,] expected)
        {
            using (var graph = new TFGraph())
                using (var session = new TFSession(graph))
                {
                    var matrix    = graph.Placeholder(TFDataType.Double);
                    var clip_norm = graph.Placeholder(TFDataType.Double);
                    var a         = graph.Const(new TFTensor(axis));

                    TFOutput y = graph.ClipByNorm(matrix, clip_norm, a);

                    if (expected != null)
                    {
                        TFTensor[] result = session.Run(new[] { matrix, clip_norm }, new TFTensor[] { m, norm }, new[] { y });

                        double[,] actual = (double[, ])result[0].GetValue();
                        TestUtils.MatrixEqual(expected, actual, precision: 10);
                    }
                    else
                    {
                        Assert.Throws <TFException>(() => session.Run(new[] { matrix, clip_norm }, new TFTensor[] { m, norm }, new[] { y }));
                    }
                }
        }
Ejemplo n.º 25
0
    /// Loads the tensorflow graph model to generate a TFGraph object
    public void InitializeCoreBrain()
    {
#if ENABLE_TENSORFLOW
#if UNITY_ANDROID
        // This needs to ba called only once and will raise an exception if
        // there are multiple internal brains
        try{
            TensorFlowSharp.Android.NativeBinding.Init();
        }
        catch {
        }
#endif

        if (graphModel != null)
        {
            graph = new TFGraph();

            graph.Import(graphModel.bytes);

            session = new TFSession(graph);

            if (graph[graphScope + BatchSizePlaceholderName] != null)
            {
                hasBatchSize = true;
            }
            if ((graph[graphScope + RecurrentInPlaceholderName] != null) && (graph[graphScope + RecurrentOutPlaceholderName] != null))
            {
                hasRecurrent = true;
            }
            if (graph[graphScope + StatePlacholderName] != null)
            {
                hasState = true;
            }
        }
#endif
    }
Ejemplo n.º 26
0
        public Result Run(byte[] image)
        {
            var result = new Result();

            using (var session = new TFSession(_graph))
            {
                var tensor = ImageUtil.CreateTensorFromImage(image);
                var runner = session.GetRunner();
                runner.AddInput(_graph["Placeholder"][0], tensor).Fetch(_graph["loss"][0]);
                var output        = runner.Run();
                var allResults    = output[0];
                var probabilities = ((float[][])allResults.GetValue(jagged: true))[0];
                for (var i = 0; i < probabilities.Length; i++)
                {
                    if (probabilities[i] > result.Idx)
                    {
                        result.Label = _labels[i];
                        result.Idx   = probabilities[i];
                    }
                }
            }

            return(result);
        }
Ejemplo n.º 27
0
        static void Main(string[] args)
        {
            // 创建图
            var g = new TFGraph();

            // 创建一些变量
            var x = g.Const(3.0);  // x=3

            var y1 = g.Square(x);  // x^2=9
            var y2 = g.Square(y1); // x^4=81
            var y3 = g.Square(y2); // x^8=6561

            // 计算倾斜度d(y1+y3)=d(x^2 + x^8)=2*x+8*x^7=17502
            var a = g.AddGradients(new[] { y1, y3 }, new[] { x });

            // 创建会话
            var sess = new TFSession(g);

            // 计算结果
            var result = sess.Run(new TFOutput[] { }, new TFTensor[] { }, a);

            // 输出计算结果
            Console.WriteLine((double)result[0].GetValue()); // 17502
        }
Ejemplo n.º 28
0
        public static TFTensor CreateTensorFromBuffer(byte[] data, int imageWidth, int imageHeight, int numChannels,
                                                      int resizeWidth, int resizeHeight,
                                                      TFDataType destinationDataType = TFDataType.Float)
        {
            var tensor = TFTensor.FromBuffer(new TFShape(imageHeight, imageWidth, numChannels), data, 0,
                                             imageWidth * imageHeight * numChannels);

            TFOutput input, output;

            // Construct a graph to normalize the image
            using (var graph = ConstructGraphToNormalizeRawImage(out input, out output, resizeWidth, resizeHeight, destinationDataType))
            {
                // Execute that graph to normalize this one image
                using (var session = new TFSession(graph))
                {
                    var normalized = session.Run(
                        inputs: new[] { input },
                        inputValues: new[] { tensor },
                        outputs: new[] { output });

                    return(normalized[0]);
                }
            }
        }
Ejemplo n.º 29
0
        /// <summary>
        /// 基础占位符运算
        /// </summary>
        public static void BasicPlaceholderOperation()
        {
            using (var s = new TFSession())
            {
                var g = s.Graph;

                //占位符 - 一种不需要初始化,在运算时再提供值的对象
                //1*2的占位符
                var v1 = g.Placeholder(TFDataType.Double, new TFShape(2));
                var v2 = g.Placeholder(TFDataType.Double, new TFShape(2));

                //建立一个相乘的运算
                var add = g.Mul(v1, v2);

                //获得runner
                var runner = s.GetRunner();

                //相加
                //在这里给占位符提供值
                var data1 = new double[] { 0.3, 0.5 };
                var data2 = new double[] { 0.4, 0.8 };

                var result = runner
                             .Fetch(add)
                             .AddInput(v1, new TFTensor(data1))
                             .AddInput(v2, new TFTensor(data2))
                             .Run();

                var dataResult = (double[])result[0].GetValue();

                //获得result的值
                Console.WriteLine($"相乘的结果: [{dataResult[0]}, {dataResult[1]}]");

                // 相乘的结果: [0.12, 0.4]
            }
        }
Ejemplo n.º 30
0
        public static void TestMethod2()
        {
            string model_file = $@"E:\PythonSrc\Py.Watermelon\Tensorflow\grf.pb";

            var graph = new TFGraph();
            // 重点是下面的这句,把训练好的pb文件给读出来字节,然后导入
            var model = File.ReadAllBytes(model_file);

            graph.Import(model);

            Console.WriteLine("请输入一个图片的地址");
            var src    = Console.ReadLine();
            var tensor = ImageUtil.CreateTensorFromImageFile(src);

            using (var sess = new TFSession(graph))
            {
                var runner = sess.GetRunner();
                runner.AddInput(graph["Cast_1"][0], tensor);
                var r = runner.Run(graph.Softmax(graph["softmax_linear/softmax_linear"][0]));
                var v = (float[, ])r.GetValue();
                Console.WriteLine(v[0, 0]);
                Console.WriteLine(v[0, 1]);
            }
        }