Ejemplo n.º 1
0
        public void ReplaceSequence()
        {
            StringTransducer replace = StringTransducer.Replace("hello", "worlds");

            StringInferenceTestUtilities.TestTransducerValue(replace, "hello", "worlds", 1.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "worlds", "hello", 0.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "worlds", "worlds", 0.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "hello", "hello", 0.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "hello", string.Empty, 0.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, string.Empty, "worlds", 0.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, string.Empty, string.Empty, 0.0);
        }
Ejemplo n.º 2
0
        public void ReplaceElements()
        {
            StringTransducer replace = StringTransducer.Replace(DiscreteChar.Lower(), DiscreteChar.Digit());

            StringInferenceTestUtilities.TestTransducerValue(replace, "hello", "123", 1.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "w", "1337", 1.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "w", string.Empty, 1.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, string.Empty, "17", 1.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, string.Empty, string.Empty, 1.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "123", "worlds", 0.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "123", "123", 0.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "1", string.Empty, 0.0);
        }
Ejemplo n.º 3
0
        public void Repeat3()
        {
            StringAutomaton  automaton = StringAutomaton.ConstantOn(2.0, "a", "aa");
            StringTransducer repeat    = StringTransducer.Repeat(StringTransducer.Replace(automaton, automaton), minTimes: 0);

            StringInferenceTestUtilities.TestTransducerValue(repeat, string.Empty, string.Empty, 1.0); // TODO: it's not clear from the definition that this should hold
            StringInferenceTestUtilities.TestTransducerValue(repeat, "a", "a", 4.0);
            StringInferenceTestUtilities.TestTransducerValue(repeat, "a", "aa", 4.0);
            StringInferenceTestUtilities.TestTransducerValue(repeat, "aa", "aa", 20.0);
            StringInferenceTestUtilities.TestTransducerValue(repeat, "aaa", "aa", 32.0);
            StringInferenceTestUtilities.TestTransducerValue(repeat, "aa", "aaa", 32.0);
            StringInferenceTestUtilities.TestTransducerValue(repeat, "a", "aaa", 0.0);
            StringInferenceTestUtilities.TestTransducerValue(repeat, string.Empty, "a", 0.0);
            StringInferenceTestUtilities.TestTransducerValue(repeat, "b", "b", 0.0);
        }
Ejemplo n.º 4
0
        public void Sum()
        {
            StringTransducer replace = StringTransducer.Sum(
                StringTransducer.Replace(DiscreteChar.Lower(), DiscreteChar.Digit()),
                StringTransducer.Replace(DiscreteChar.Lower(), DiscreteChar.LetterOrDigit()));

            StringInferenceTestUtilities.TestTransducerValue(replace, "hello", "123", 2.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "w", "1337", 2.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "w", string.Empty, 2.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, string.Empty, "17", 2.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, string.Empty, string.Empty, 2.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "hello", "worlds", 1.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "hello", "WORLDS111", 1.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "123", "worlds", 0.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "123", "123", 0.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "1", string.Empty, 0.0);
        }
Ejemplo n.º 5
0
        public void ReplaceAutomaton()
        {
            StringAutomaton automaton1 = StringAutomaton.Constant(2.0, DiscreteChar.Lower());

            automaton1 = automaton1.Sum(StringAutomaton.ConstantOnElement(3.0, 'a'));
            StringAutomaton automaton2 = StringAutomaton.Constant(0.5, DiscreteChar.Digit());

            automaton2 = automaton2.Sum(StringAutomaton.Constant(2.5, DiscreteChar.LetterOrDigit()));
            StringTransducer replace = StringTransducer.Replace(automaton1, automaton2);

            StringInferenceTestUtilities.TestTransducerValue(replace, string.Empty, "123", 6.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "a", "123", 15.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "ax", "AbC", 5.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "a", "a", 12.5);
            StringInferenceTestUtilities.TestTransducerValue(replace, string.Empty, string.Empty, 6.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "123", string.Empty, 0.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "AbC", "ax", 0.0);
            StringInferenceTestUtilities.TestTransducerValue(replace, "1", "1", 0.0);
        }
Ejemplo n.º 6
0
        public void WordModel()
        {
            // We want to build a word model as a reasonably simple StringDistribution. It
            // should satisfy the following:
            // (1) The probability of a word of moderate length should not be
            //     significantly less than the probability of a shorter word.
            // (2) The probability of a specific word conditioned on its length matches that of
            //     words in the target language.
            // We achieve this by putting non-normalized character distributions on the edges. The
            // StringDistribution is unaware that these are non-normalized.
            // The StringDistribution itself is non-normalizable.
            const double TargetProb1  = 0.05;
            const double Ratio1       = 0.4;
            const double TargetProb2  = TargetProb1 * Ratio1;
            const double Ratio2       = 0.2;
            const double TargetProb3  = TargetProb2 * Ratio2;
            const double TargetProb4  = TargetProb3 * Ratio2;
            const double TargetProb5  = TargetProb4 * Ratio2;
            const double Ratio3       = 0.999;
            const double TargetProb6  = TargetProb5 * Ratio3;
            const double TargetProb7  = TargetProb6 * Ratio3;
            const double TargetProb8  = TargetProb7 * Ratio3;
            const double Ratio4       = 0.9;
            const double TargetProb9  = TargetProb8 * Ratio4;
            const double TargetProb10 = TargetProb9 * Ratio4;

            var targetProbabilitiesPerLength = new double[]
            {
                TargetProb1, TargetProb2, TargetProb3, TargetProb4, TargetProb5, TargetProb6, TargetProb7, TargetProb8, TargetProb9, TargetProb10
            };

            var charDistUpper          = DiscreteChar.Upper();
            var charDistLower          = DiscreteChar.Lower();
            var charDistUpperNarrow    = DiscreteChar.OneOf('A', 'B');
            var charDistLowerNarrow    = DiscreteChar.OneOf('a', 'b');
            var charDistUpperScaled    = DiscreteChar.Uniform();
            var charDistLowerScaled1   = DiscreteChar.Uniform();
            var charDistLowerScaled2   = DiscreteChar.Uniform();
            var charDistLowerScaled3   = DiscreteChar.Uniform();
            var charDistLowerScaledEnd = DiscreteChar.Uniform();

            charDistUpperScaled.SetToPartialUniformOf(charDistUpper, Math.Log(TargetProb1));
            charDistLowerScaled1.SetToPartialUniformOf(charDistLower, Math.Log(Ratio1));
            charDistLowerScaled2.SetToPartialUniformOf(charDistLower, Math.Log(Ratio2));
            charDistLowerScaled3.SetToPartialUniformOf(charDistLower, Math.Log(Ratio3));
            charDistLowerScaledEnd.SetToPartialUniformOf(charDistLower, Math.Log(Ratio4));

            var wordModel = StringDistribution.Concatenate(
                new List <DiscreteChar>
            {
                charDistUpperScaled,
                charDistLowerScaled1,
                charDistLowerScaled2,
                charDistLowerScaled2,
                charDistLowerScaled2,
                charDistLowerScaled3,
                charDistLowerScaled3,
                charDistLowerScaled3,
                charDistLowerScaledEnd
            },
                true,
                true);

            const string Word = "Abcdefghij";

            const double Eps                   = 1e-5;
            var          broadDist             = StringDistribution.Char(charDistUpper);
            var          narrowDist            = StringDistribution.Char(charDistUpperNarrow);
            var          narrowWord            = "A";
            var          expectedProbForNarrow = 0.5;

            for (var i = 0; i < targetProbabilitiesPerLength.Length; i++)
            {
                var currentWord     = Word.Substring(0, i + 1);
                var probCurrentWord = Math.Exp(wordModel.GetLogProb(currentWord));
                Assert.Equal(targetProbabilitiesPerLength[i], probCurrentWord, Eps);

                var logAvg = Math.Exp(wordModel.GetLogAverageOf(broadDist));
                Assert.Equal(targetProbabilitiesPerLength[i], logAvg, Eps);

                var prod = StringDistribution.Zero();
                prod.SetToProduct(broadDist, wordModel);
                Xunit.Assert.True(prod.GetWorkspaceOrPoint().HasElementLogValueOverrides);
                probCurrentWord = Math.Exp(prod.GetLogProb(currentWord));
                Assert.Equal(targetProbabilitiesPerLength[i], probCurrentWord, Eps);

                prod.SetToProduct(narrowDist, wordModel);
                Xunit.Assert.False(prod.GetWorkspaceOrPoint().HasElementLogValueOverrides);
                var probNarrowWord = Math.Exp(prod.GetLogProb(narrowWord));
                Assert.Equal(expectedProbForNarrow, probNarrowWord, Eps);

                broadDist              = broadDist.Append(charDistLower);
                narrowDist             = narrowDist.Append(charDistLowerNarrow);
                narrowWord            += "a";
                expectedProbForNarrow *= 0.5;
            }

            // Copied model
            var copiedModel = StringDistribution.FromWorkspace(StringTransducer.Copy().ProjectSource(wordModel.GetWorkspaceOrPoint()));

            // Under transducer.
            for (var i = 0; i < targetProbabilitiesPerLength.Length; i++)
            {
                var currentWord     = Word.Substring(0, i + 1);
                var probCurrentWord = Math.Exp(copiedModel.GetLogProb(currentWord));
                Assert.Equal(targetProbabilitiesPerLength[i], probCurrentWord, Eps);
            }

            // Rescaled model
            var scale                = 0.5;
            var newTargetProb1       = TargetProb1 * scale;
            var charDistUpperScaled1 = DiscreteChar.Uniform();

            charDistUpperScaled1.SetToPartialUniformOf(charDistUpper, Math.Log(newTargetProb1));
            var reWeightingTransducer =
                StringTransducer.Replace(StringDistribution.Char(charDistUpper).GetWorkspaceOrPoint(), StringDistribution.Char(charDistUpperScaled1).GetWorkspaceOrPoint())
                .Append(StringTransducer.Copy());
            var reWeightedWordModel = StringDistribution.FromWorkspace(reWeightingTransducer.ProjectSource(wordModel.GetWorkspaceOrPoint()));

            for (var i = 0; i < targetProbabilitiesPerLength.Length; i++)
            {
                var currentWord     = Word.Substring(0, i + 1);
                var probCurrentWord = Math.Exp(reWeightedWordModel.GetLogProb(currentWord));
                Assert.Equal(scale * targetProbabilitiesPerLength[i], probCurrentWord, Eps);
            }
        }