public void TestSrCnnAnomalyDetectorWithSeasonalAnomalyData(
            [CombinatorialValues(SrCnnDeseasonalityMode.Stl, SrCnnDeseasonalityMode.Mean, SrCnnDeseasonalityMode.Median)] SrCnnDeseasonalityMode mode
            )
        {
            var       ml = new MLContext(1);
            IDataView dataView;
            var       dataPath = GetDataPath("Timeseries", "period_anomaly.csv");

            // Load data from file into the dataView
            dataView = ml.Data.LoadFromTextFile <TimeSeriesDataDouble>(dataPath, hasHeader: true);

            // Setup the detection arguments
            string outputColumnName = nameof(SrCnnAnomalyDetection.Prediction);
            string inputColumnName  = nameof(TimeSeriesDataDouble.Value);

            // Do batch anomaly detection
            var options = new SrCnnEntireAnomalyDetectorOptions()
            {
                Threshold         = 0.23,
                BatchSize         = -1,
                Sensitivity       = 53.0,
                DetectMode        = SrCnnDetectMode.AnomalyAndMargin,
                Period            = 288,
                DeseasonalityMode = mode
            };

            var outputDataView = ml.AnomalyDetection.DetectEntireAnomalyBySrCnn(dataView, outputColumnName, inputColumnName, options);

            // Getting the data of the newly created column as an IEnumerable of SrCnnAnomalyDetection.
            var predictionColumn = ml.Data.CreateEnumerable <SrCnnAnomalyDetection>(
                outputDataView, reuseRowObject: false);

            var anomalyStartIndex = 2988;
            var anomalyEndIndex   = 3095;

            int k = 0;

            foreach (var prediction in predictionColumn)
            {
                Assert.Equal(7, prediction.Prediction.Length);
                if (anomalyStartIndex <= k && k <= anomalyEndIndex)
                {
                    Assert.Equal(1, prediction.Prediction[0]);
                }
                else
                {
                    Assert.Equal(0, prediction.Prediction[0]);
                }

                ++k;
            }
        }
Ejemplo n.º 2
0
            public SrCnnEntireModeler(double threshold, double sensitivity, SrCnnDetectMode detectMode, int period, SrCnnDeseasonalityMode deseasonalityMode)
            {
                _threshold    = threshold;
                _sensitivity  = sensitivity;
                _detectMode   = detectMode;
                _period       = period;
                _predictArray = new double[_lookaheadWindowSize + 1];

                switch (deseasonalityMode)
                {
                case SrCnnDeseasonalityMode.Stl:
                    _deseasonalityFunction = new StlDeseasonality();
                    break;

                case SrCnnDeseasonalityMode.Mean:
                    _deseasonalityFunction = new MeanDeseasonality();
                    break;

                default:
                    Contracts.Assert(deseasonalityMode == SrCnnDeseasonalityMode.Median);
                    _deseasonalityFunction = new MedianDeseasonality();
                    break;
                }
            }
Ejemplo n.º 3
0
 public Batch(int batchSize, int outputLength, double threshold, double sensitivity, SrCnnDetectMode detectMode, int period, SrCnnDeseasonalityMode deseasonalityMode)
 {
     _batchSize    = batchSize;
     _outputLength = outputLength;
     if (batchSize == -1)
     {
         _previousBatch = new List <double>();
         _batch         = new List <double>();
     }
     else
     {
         _previousBatch = new List <double>(batchSize);
         _batch         = new List <double>(batchSize);
     }
     _modeler = new SrCnnEntireModeler(threshold, sensitivity, detectMode, period, deseasonalityMode);
 }