Ejemplo n.º 1
0
        /// <summary>
        /// Runs the NSGA-II algorithm.
        /// </summary>
        /// <returns>a <code>SolutionSet</code> that is a set of non dominated solutions as a result of the algorithm execution</returns>
        public override SolutionSet Execute()
        {
            int populationSize = -1;
            int maxEvaluations = -1;
            int evaluations;

            JMetalCSharp.QualityIndicator.QualityIndicator indicators = null; // QualityIndicator object
            int requiredEvaluations;                                          // Use in the example of use of the
                                                                              // indicators object (see below)

            SolutionSet population;
            SolutionSet offspringPopulation;
            SolutionSet union;

            Operator mutationOperator;
            Operator crossoverOperator;
            Operator selectionOperator;

            Distance distance = new Distance();

            //Read the parameters
            JMetalCSharp.Utils.Utils.GetIntValueFromParameter(this.InputParameters, "maxEvaluations", ref maxEvaluations);
            JMetalCSharp.Utils.Utils.GetIntValueFromParameter(this.InputParameters, "populationSize", ref populationSize);
            JMetalCSharp.Utils.Utils.GetIndicatorsFromParameters(this.InputParameters, "indicators", ref indicators);

            parallelEvaluator.StartParallelRunner(Problem);;

            //Initialize the variables
            population  = new SolutionSet(populationSize);
            evaluations = 0;

            requiredEvaluations = 0;

            //Read the operators
            mutationOperator  = Operators["mutation"];
            crossoverOperator = Operators["crossover"];
            selectionOperator = Operators["selection"];


            // Create the initial solutionSet
            IntergenSolution newSolution;

            for (int i = 0; i < populationSize; i++)
            {
                newSolution = new IntergenSolution((IntergenProblem)Problem);
                parallelEvaluator.AddTaskForExecution(new object[] { newSolution, i });;
            }

            List <IntergenSolution> solutionList = (List <IntergenSolution>)parallelEvaluator.ParallelExecution();

            foreach (IntergenSolution solution in solutionList)
            {
                population.Add(solution);
                evaluations++;
            }

            // Generations
            while (evaluations < maxEvaluations)
            {
                // Create the offSpring solutionSet
                offspringPopulation = new SolutionSet(populationSize);
                IntergenSolution[] parents = new IntergenSolution[2];

                for (int i = 0; i < (populationSize / 2); i++)
                {
                    if (evaluations < maxEvaluations)
                    {
                        //obtain parents
                        parents[0] = (IntergenSolution)selectionOperator.Execute(population);
                        parents[1] = (IntergenSolution)selectionOperator.Execute(population);
                        IntergenSolution[] offSpring = (IntergenSolution[])crossoverOperator.Execute(parents);
                        mutationOperator.Execute(offSpring[0]);
                        mutationOperator.Execute(offSpring[1]);

                        parallelEvaluator.AddTaskForExecution(new object[] { offSpring[0], evaluations + i });
                        parallelEvaluator.AddTaskForExecution(new object[] { offSpring[1], evaluations + i });
                    }
                }

                List <IntergenSolution> solutions = (List <IntergenSolution>)parallelEvaluator.ParallelExecution();

                foreach (IntergenSolution solution in solutions)
                {
                    offspringPopulation.Add(solution);
                    evaluations++;
                    //solution.FoundAtEval = evaluations;
                }

                // Create the solutionSet union of solutionSet and offSpring
                union = ((SolutionSet)population).Union(offspringPopulation);

                // Ranking the union
                Ranking ranking = new Ranking(union);

                int         remain = populationSize;
                int         index  = 0;
                SolutionSet front  = null;
                population.Clear();

                // Obtain the next front
                front = ranking.GetSubfront(index);

                while ((remain > 0) && (remain >= front.Size()))
                {
                    //Assign crowding distance to individuals
                    distance.CrowdingDistanceAssignment(front, Problem.NumberOfObjectives);
                    //Add the individuals of this front
                    for (int k = 0; k < front.Size(); k++)
                    {
                        population.Add(front.Get(k));
                    }

                    //Decrement remain
                    remain = remain - front.Size();

                    //Obtain the next front
                    index++;
                    if (remain > 0)
                    {
                        front = ranking.GetSubfront(index);
                    }
                }

                // Remain is less than front(index).size, insert only the best one
                if (remain > 0)
                {  // front contains individuals to insert
                    distance.CrowdingDistanceAssignment(front, Problem.NumberOfObjectives);
                    front.Sort(new CrowdingComparator());
                    for (int k = 0; k < remain; k++)
                    {
                        population.Add(front.Get(k));
                    }

                    remain = 0;
                }

                // This piece of code shows how to use the indicator object into the code
                // of NSGA-II. In particular, it finds the number of evaluations required
                // by the algorithm to obtain a Pareto front with a hypervolume higher
                // than the hypervolume of the true Pareto front.
                if ((indicators != null) &&
                    (requiredEvaluations == 0))
                {
                    double HV = indicators.GetHypervolume(population);
                    if (HV >= (0.98 * indicators.TrueParetoFrontHypervolume))
                    {
                        requiredEvaluations = evaluations;
                    }
                }

                //TODO

                /*
                 * Ranking rank2 = new Ranking(population);
                 *
                 * Result = rank2.GetSubfront(0);
                 */

                /*Ranking forGraphicOutput = new Ranking(population);
                 * var currentBestResultSet = forGraphicOutput.GetSubfront(0);
                 *
                 * var firstBestResult = currentBestResultSet.Get(0);
                 *
                 * var myProblem = (IntergenProblem)Problem;
                 * //myProblem.calculated;
                 *
                 * //var variantValuesWithoutInteraction = Matrix.Multiply(myProblem.calculated, firstBestResult.);
                 * //var Model = myProblem.GetModel();
                 * int mycounter = 0;
                 * if (mycounter % 500 == 0)
                 * {
                 *  //RIntegrator.PlotValues(currentBestResultSet, myProblem);
                 * }
                 * mycounter++;
                 * var progress = new UserProgress();
                 * progress.FeatureP = firstBestResult.Objective[0];
                 * if (!myProblem.Model.Setting.NoVariantCalculation) progress.VariantP = firstBestResult.Objective[1];
                 * myProblem.Worker.ReportProgress(evaluations * 100 / maxEvaluations, progress); ;
                 *
                 * //Model.CurrentBestImage = "CurrentBest.png"; */
                front = ranking.GetSubfront(0);

                var minmax = new MinMaxFitness
                {
                    FeatMax  = double.MinValue,
                    FeatMin  = double.MaxValue,
                    VarMax   = double.MinValue,
                    VarMin   = double.MaxValue,
                    InterMax = double.MinValue,
                    InterMin = double.MaxValue
                };
                var prob = (IntergenProblem)Problem;
                var list = ObjectiveMapping.GetList(prob.ProblemType);
                for (var i = 0; i < populationSize; i++)
                {
                    var sol = population.Get(i);



                    var objindex = 0;
                    if (list[0])
                    {
                        if (sol.Objective[objindex] < minmax.FeatMin)
                        {
                            minmax.FeatMin = sol.Objective[objindex];
                        }
                        if (sol.Objective[objindex] > minmax.FeatMax)
                        {
                            minmax.FeatMax = sol.Objective[objindex];
                        }

                        objindex++;
                    }
                    if (list[1])
                    {
                        if (sol.Objective[objindex] < minmax.InterMin)
                        {
                            minmax.InterMin = sol.Objective[objindex];
                        }
                        if (sol.Objective[objindex] > minmax.InterMax)
                        {
                            minmax.InterMax = sol.Objective[objindex];
                        }

                        objindex++;
                    }
                    if (list[2])
                    {
                        if (sol.Objective[objindex] < minmax.VarMin)
                        {
                            minmax.VarMin = sol.Objective[objindex];
                        }
                        if (sol.Objective[objindex] > minmax.VarMax)
                        {
                            minmax.VarMax = sol.Objective[objindex];
                        }
                    }
                }

                var sol0 = front.Best(new CrowdingDistanceComparator());
                var done = FitnessTracker.AddFitn(minmax);
                SolutionPlotter.Plot(sol0);
                ProgressReporter.ReportSolution(evaluations, sol0, _worker);

                if (done)
                {
                    Ranking rank3 = new Ranking(population);

                    Result = rank3.GetSubfront(0);
                    SetOutputParameter("evaluations", evaluations);

                    return(this.Result);
                }
            }
            // Return as output parameter the required evaluations
            SetOutputParameter("evaluations", evaluations);

            // Return the first non-dominated front
            Ranking rank = new Ranking(population);

            Result = rank.GetSubfront(0);

            return(this.Result);
        }
Ejemplo n.º 2
0
        /// <summary>
        /// Runs the NSGA-II algorithm.
        /// </summary>
        /// <returns>a <code>SolutionSet</code> that is a set of non dominated solutions as a result of the algorithm execution</returns>
        public override SolutionSet Execute()
        {
            int populationSize = -1;
            int maxEvaluations = -1;
            int evaluations;

            QualityIndicator indicators = null; // QualityIndicator object
            int requiredEvaluations;            // Use in the example of use of the
                                                // indicators object (see below)

            SolutionSet population;
            SolutionSet offspringPopulation;
            SolutionSet union;

            Operator mutationOperator;
            Operator crossoverOperator;
            Operator selectionOperator;

            Distance distance = new Distance();

            //Read the parameters
            JMetalCSharp.Utils.Utils.GetIntValueFromParameter(this.InputParameters, "maxEvaluations", ref maxEvaluations);
            JMetalCSharp.Utils.Utils.GetIntValueFromParameter(this.InputParameters, "populationSize", ref populationSize);
            JMetalCSharp.Utils.Utils.GetIndicatorsFromParameters(this.InputParameters, "indicators", ref indicators);

            //Initialize the variables
            population  = new SolutionSet(populationSize);
            evaluations = 0;

            requiredEvaluations = 0;

            //Read the operators
            mutationOperator  = Operators["mutation"];
            crossoverOperator = Operators["crossover"];
            selectionOperator = Operators["selection"];
            var    plotCounter = 0;
            var    plotModulo  = 4;
            Random random      = new Random(2);

            JMetalRandom.SetRandom(random);

            // Create the initial solutionSet
            IntergenSolution newSolution;

            for (int i = 0; i < populationSize; i++)
            {
                //var test = (IntergenProblem) Problem;
                newSolution = new IntergenSolution((IntergenProblem)Problem);
                Problem.Evaluate(newSolution);
                Problem.EvaluateConstraints(newSolution);
                evaluations++;
                population.Add(newSolution);
            }

            // Generations
            while (evaluations < maxEvaluations)
            {
                // Create the offSpring solutionSet
                offspringPopulation = new SolutionSet(populationSize);
                IntergenSolution[] parents = new IntergenSolution[2];
                for (int i = 0; i < (populationSize / 2); i++)
                {
                    if (evaluations < maxEvaluations)
                    {
                        //obtain parents
                        parents[0] = (IntergenSolution)selectionOperator.Execute(population);
                        parents[1] = (IntergenSolution)selectionOperator.Execute(population);
                        IntergenSolution[] offSpring = (IntergenSolution[])crossoverOperator.Execute(parents);
                        mutationOperator.Execute(offSpring[0]);
                        mutationOperator.Execute(offSpring[1]);
                        Problem.Evaluate(offSpring[0]);
                        Problem.EvaluateConstraints(offSpring[0]);
                        Problem.Evaluate(offSpring[1]);
                        Problem.EvaluateConstraints(offSpring[1]);
                        offspringPopulation.Add(offSpring[0]);
                        offspringPopulation.Add(offSpring[1]);
                        evaluations += 2;
                    }
                }
                // Create the solutionSet union of solutionSet and offSpring
                union = ((SolutionSet)population).Union(offspringPopulation);

                // Ranking the union
                Ranking ranking = new Ranking(union);

                int         remain = populationSize;
                int         index  = 0;
                SolutionSet front  = null;
                population.Clear();

                // Obtain the next front
                front = ranking.GetSubfront(index);

                while ((remain > 0) && (remain >= front.Size()))
                {
                    //Assign crowding distance to individuals
                    distance.CrowdingDistanceAssignment(front, Problem.NumberOfObjectives);
                    //Add the individuals of this front
                    for (int k = 0; k < front.Size(); k++)
                    {
                        population.Add(front.Get(k));
                    }

                    //Decrement remain
                    remain = remain - front.Size();

                    //Obtain the next front
                    index++;
                    if (remain > 0)
                    {
                        front = ranking.GetSubfront(index);
                    }
                }

                // Remain is less than front(index).size, insert only the best one
                if (remain > 0)
                {  // front contains individuals to insert
                    distance.CrowdingDistanceAssignment(front, Problem.NumberOfObjectives);
                    front.Sort(new CrowdingComparator());
                    for (int k = 0; k < remain; k++)
                    {
                        population.Add(front.Get(k));
                    }

                    remain = 0;
                }

                // This piece of code shows how to use the indicator object into the code
                // of NSGA-II. In particular, it finds the number of evaluations required
                // by the algorithm to obtain a Pareto front with a hypervolume higher
                // than the hypervolume of the true Pareto front.
                if ((indicators != null) && (requiredEvaluations == 0))
                {
                    double HV = indicators.GetHypervolume(population);
                    if (HV >= (0.98 * indicators.TrueParetoFrontHypervolume))
                    {
                        requiredEvaluations = evaluations;
                    }
                }

                var sol0 = front.Best(new CrowdingComparator());
                //if (plotCounter%plotModulo == 0)

                SolutionPlotter.Plot(sol0);
                ProgressReporter.ReportSolution(evaluations, sol0, _worker);
            }

            // Return as output parameter the required evaluations
            SetOutputParameter("evaluations", requiredEvaluations);

            // Return the first non-dominated front
            Ranking rank = new Ranking(population);

            Result = rank.GetSubfront(0);

            return(Result);
        }