Ejemplo n.º 1
0
        private static void SampleWdbc()
        {
            SigmaEnvironment sigma = SigmaEnvironment.Create("wdbc");

            IDataset dataset = Defaults.Datasets.Wdbc();

            ITrainer trainer = sigma.CreateGhostTrainer("wdbc-trainer");

            trainer.Network.Architecture = InputLayer.Construct(30)
                                           + FullyConnectedLayer.Construct(42)
                                           + FullyConnectedLayer.Construct(24)
                                           + FullyConnectedLayer.Construct(1)
                                           + OutputLayer.Construct(1)
                                           + SquaredDifferenceCostLayer.Construct();

            trainer.TrainingDataIterator = new MinibatchIterator(72, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(dataset));
            trainer.Optimiser = new GradientDescentOptimiser(learningRate: 0.005);

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.1));

            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch)));
            trainer.AddHook(new UniClassificationAccuracyReporter("validation", 0.5, TimeStep.Every(1, TimeScale.Epoch)));

            sigma.AddTrainer(trainer);

            sigma.AddMonitor(new HttpMonitor("http://+:8080/sigma/"));

            sigma.PrepareAndRun();
        }
Ejemplo n.º 2
0
        private static void SampleParkinsons()
        {
            SigmaEnvironment sigma = SigmaEnvironment.Create("parkinsons");

            IDataset dataset = Defaults.Datasets.Parkinsons();

            ITrainer trainer = sigma.CreateGhostTrainer("parkinsons-trainer");

            trainer.Network.Architecture = InputLayer.Construct(22)
                                           + FullyConnectedLayer.Construct(140)
                                           + FullyConnectedLayer.Construct(20)
                                           + FullyConnectedLayer.Construct(1)
                                           + OutputLayer.Construct(1)
                                           + SquaredDifferenceCostLayer.Construct();

            trainer.TrainingDataIterator = new MinibatchIterator(10, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(dataset));
            trainer.Optimiser = new AdagradOptimiser(baseLearningRate: 0.01);

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.1));

            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch)));
            trainer.AddHook(new UniClassificationAccuracyReporter("validation", 0.5, TimeStep.Every(1, TimeScale.Epoch)));

            sigma.AddTrainer(trainer);

            sigma.PrepareAndRun();
        }
Ejemplo n.º 3
0
        private static void SampleIris()
        {
            SigmaEnvironment sigma = SigmaEnvironment.Create("iris");

            sigma.SetRandomSeed(0);

            sigma.Prepare();

            IDataset dataset = Defaults.Datasets.Iris();

            ITrainer trainer = sigma.CreateGhostTrainer("iris-trainer");

            trainer.Network.Architecture = InputLayer.Construct(4)
                                           + FullyConnectedLayer.Construct(12)
                                           + FullyConnectedLayer.Construct(3)
                                           + OutputLayer.Construct(3)
                                           + SquaredDifferenceCostLayer.Construct();
            //trainer.Network = Serialisation.ReadBinaryFileIfExists("iris.sgnet", trainer.Network);

            trainer.TrainingDataIterator = new MinibatchIterator(50, dataset);
            trainer.AddNamedDataIterator("validation", new UndividedIterator(dataset));
            trainer.Optimiser = new GradientDescentOptimiser(learningRate: 0.06);
            trainer.Operator  = new CudaSinglethreadedOperator();

            trainer.AddInitialiser("*.*", new GaussianInitialiser(standardDeviation: 0.1));

            //trainer.AddGlobalHook(new StopTrainingHook(atEpoch: 100));
            //trainer.AddLocalHook(new EarlyStopperHook("optimiser.cost_total", 20, target: ExtremaTarget.Min));

            trainer.AddLocalHook(new AccumulatedValueReporter("optimiser.cost_total", TimeStep.Every(1, TimeScale.Epoch), reportEpochIteration: true));
            //.On(new ExtremaCriteria("optimiser.cost_total", ExtremaTarget.Min)));
            //trainer.AddLocalHook(new DiskSaviorHook<INetwork>("network.self", Namers.Dynamic("iris_epoch{0}.sgnet", "epoch"), verbose: true)
            //    .On(new ExtremaCriteria("optimiser.cost_total", ExtremaTarget.Min)));

            trainer.AddHook(new MultiClassificationAccuracyReporter("validation", TimeStep.Every(1, TimeScale.Epoch), tops: 1));
            trainer.AddHook(new StopTrainingHook(new ThresholdCriteria("shared.classification_accuracy_top1", ComparisonTarget.GreaterThanEquals, 0.98)));

            trainer.AddLocalHook(new RunningTimeReporter(TimeStep.Every(599, TimeScale.Iteration), 128));
            trainer.AddLocalHook(new RunningTimeReporter(TimeStep.Every(1, TimeScale.Epoch), 4));

            //Serialisation.WriteBinaryFile(trainer, "trainer.sgtrainer");
            //trainer = Serialisation.ReadBinaryFile<ITrainer>("trainer.sgtrainer");

            sigma.AddTrainer(trainer);

            sigma.AddMonitor(new HttpMonitor("http://+:8080/sigma/"));

            sigma.PrepareAndRun();
        }