Ejemplo n.º 1
0
        public static async Task Main(string[] args)
        {
            Console.WriteLine($"[{DateTime.Now}] Tuner start");
            SettingsLoader.Init("settings.json");

            _webService          = new WebService();
            _generationStopwatch = new Stopwatch();

            await _webService.EnableIfAvailable();

            _testId = await _webService.RegisterTest();

            var selection  = new EliteSelection();
            var crossover  = new UniformCrossover(0.5f);
            var mutation   = new UniformMutation(true);
            var fitness    = new EvaluationFitness(_testId, _webService);
            var chromosome = new EvaluationChromosome();
            var population = new Population(SettingsLoader.Data.MinPopulation, SettingsLoader.Data.MaxPopulation, chromosome);

            var geneticAlgorithm = new GeneticAlgorithm(population, fitness, selection, crossover, mutation);

            geneticAlgorithm.Termination    = new GenerationNumberTermination(SettingsLoader.Data.GenerationsCount);
            geneticAlgorithm.GenerationRan += GeneticAlgorithm_GenerationRan;

            _generationStopwatch.Start();
            geneticAlgorithm.Start();

            Console.WriteLine("Best solution found has {0} fitness.", geneticAlgorithm.BestChromosome.Fitness);
            Console.ReadLine();
        }
Ejemplo n.º 2
0
        static async Task Main(string[] args)
        {
            Console.WriteLine($"[{DateTime.Now}] Tuner start");
            SettingsLoader.Init("settings.json");

            IFitness    fitness    = null;
            IChromosome chromosome = null;

            _webService = new WebService();
            await _webService.EnableIfAvailable();

            _testId = await _webService.RegisterTest(new RegisterTestRequest
            {
                Type = TestType.Texel
            });

            var scalingFactorMode = args.Contains("scaling_factor");

            if (scalingFactorMode)
            {
                SettingsLoader.Data.Genes.Clear();
                SettingsLoader.Data.Genes.Add(new GeneInfo
                {
                    Name     = "ScalingFactor",
                    MinValue = 0,
                    MaxValue = 2000
                });
                SettingsLoader.Data.Genes.Add(new GeneInfo
                {
                    Name     = "Unused",
                    MinValue = 0,
                    MaxValue = 1
                });

                fitness    = new ScalingFactorFitness(_testId, _webService);
                chromosome = new ScalingFactorChromosome();
            }
            else
            {
                fitness    = new EvaluationFitness(_testId, _webService);
                chromosome = new EvaluationChromosome();
            }

            var selection        = new EliteSelection();
            var crossover        = new UniformCrossover(0.5f);
            var mutation         = new UniformMutation(true);
            var population       = new Population(SettingsLoader.Data.MinPopulation, SettingsLoader.Data.MaxPopulation, chromosome);
            var geneticAlgorithm = new GeneticAlgorithm(population, fitness, selection, crossover, mutation);

            geneticAlgorithm.Termination    = new GenerationNumberTermination(SettingsLoader.Data.GenerationsCount);
            geneticAlgorithm.GenerationRan += GeneticAlgorithm_GenerationRan;

            _generationStopwatch = new Stopwatch();
            _generationStopwatch.Start();
            geneticAlgorithm.Start();

            Console.WriteLine("Best solution found has {0} fitness.", geneticAlgorithm.BestChromosome.Fitness);
            Console.ReadLine();
        }
Ejemplo n.º 3
0
 static void Main(string[] args)
 {
     SettingsLoader.Init("settings.json");
     new TournamentArbiter().Run();
 }