Ejemplo n.º 1
0
        //##################################################################################################################################

        /// <summary>
        /// NOTE!!!! The decibel array has been normalised in 0 - 1.
        /// </summary>
        protected static Tuple <double[, ], double[]> MakeCepstrogram(SonogramConfig config, double[,] matrix, double[] decibels, int sampleRate)
        {
            double[,] m = matrix;
            int    nyquist            = sampleRate / 2;
            double epsilon            = config.epsilon;
            bool   includeDelta       = config.mfccConfig.IncludeDelta;
            bool   includeDoubleDelta = config.mfccConfig.IncludeDoubleDelta;

            //Log.WriteIfVerbose(" MakeCepstrogram(matrix, decibels, includeDelta=" + includeDelta + ", includeDoubleDelta=" + includeDoubleDelta + ")");

            //(i) APPLY FILTER BANK
            int  bandCount   = config.mfccConfig.FilterbankCount;
            bool doMelScale  = config.mfccConfig.DoMelScale;
            int  ccCount     = config.mfccConfig.CcCount;
            int  fftBinCount = config.FreqBinCount; //number of Hz bands = 2^N +1. Subtract DC bin
            int  minHz       = config.MinFreqBand ?? 0;
            int  maxHz       = config.MaxFreqBand ?? nyquist;

            Log.WriteIfVerbose("ApplyFilterBank(): Dim prior to filter bank  =" + matrix.GetLength(1));

            //error check that filterBankCount < FFTbins
            if (bandCount > fftBinCount)
            {
                throw new Exception(
                          "## FATAL ERROR in BaseSonogram.MakeCepstrogram():- Can't calculate cepstral coeff. FilterbankCount > FFTbins. (" +
                          bandCount + " > " + fftBinCount + ")\n\n");
            }

            //this is the filter count for full bandwidth 0-Nyquist. This number is trimmed proportionately to fit the required bandwidth.
            if (doMelScale)
            {
                m = MFCCStuff.MelFilterBank(m, bandCount, nyquist, minHz, maxHz); // using the Greg integral
            }
            else
            {
                m = MFCCStuff.LinearFilterBank(m, bandCount, nyquist, minHz, maxHz);
            }

            Log.WriteIfVerbose("\tDim after filter bank=" + m.GetLength(1) + " (Max filter bank=" + bandCount + ")");

            //(ii) CONVERT AMPLITUDES TO DECIBELS
            m = MFCCStuff.DecibelSpectra(m, config.WindowPower, sampleRate, epsilon); //from spectrogram

            //(iii) NOISE REDUCTION
            var tuple1 = SNR.NoiseReduce(m, config.NoiseReductionType, config.NoiseReductionParameter);

            m = tuple1.Item1;

            //(iv) calculate cepstral coefficients
            m = MFCCStuff.Cepstra(m, ccCount);

            //(v) NormaliseMatrixValues
            m = DataTools.normalise(m);

            //(vi) Calculate the full range of MFCC coefficients ie including decibel and deltas, etc
            m = MFCCStuff.AcousticVectors(m, decibels, includeDelta, includeDoubleDelta);
            var tuple2 = Tuple.Create(m, tuple1.Item2);

            return(tuple2); // return matrix and full bandwidth modal noise profile
        }
Ejemplo n.º 2
0
        private double[,] SobelEdgegram(double[,] matrix)
        {
            double[,] m = MFCCStuff.DecibelSpectra(matrix, this.Configuration.WindowPower, this.SampleRate, this.Configuration.epsilon); //from spectrogram

            //double[,] m = Speech.DecibelSpectra(matrix);

            //NOISE REDUCTION
            var output = SNR.NoiseReduce(m, this.Configuration.NoiseReductionType, this.Configuration.NoiseReductionParameter);

            this.SnrData.ModalNoiseProfile = output.Item2;
            return(ImageTools.SobelEdgeDetection(output.Item1));
        }
        /// <summary>
        /// A FALSE-COLOUR VERSION OF DECIBEL SPECTROGRAM
        ///         Taken and adapted from Spectrogram Image 5 in the method of CLASS Audio2InputForConvCNN.cs:.
        /// </summary>
        /// <param name="dbSpectrogramData">the sonogram data (NOT noise reduced). </param>
        public static Image <Rgb24> DrawStandardSpectrogramInFalseColour(double[,] dbSpectrogramData)
        {
            // Do NOISE REDUCTION
            double noiseReductionParameter = 2.0;
            var    tuple = SNR.NoiseReduce(dbSpectrogramData, NoiseReductionType.Standard, noiseReductionParameter);

            double[,] nrSpectrogramData = tuple.Item1;   // store data matrix

            double ridgeThreshold = 2.5;

            double[,] matrix = dbSpectrogramData;

            byte[,] hits = RidgeDetection.Sobel5X5RidgeDetectionExperiment(matrix, ridgeThreshold);

            // ################### RESEARCH QUESTION:
            // I tried different EXPERIMENTS IN NORMALISATION
            //double min; double max;
            //DataTools.MinMax(spectralSelection, out min, out max);
            //double range = max - min;
            // readjust min and max to create the effect of contrast stretching. It enhances the spectrogram a bit
            //double fractionalStretching = 0.2;
            //min = min + (range * fractionalStretching);
            //max = max - (range * fractionalStretching);
            //range = max - min;
            // ULTIMATELY THE BEST APPROACH APPEARED TO BE FIXED NORMALISATION BOUNDS

            double truncateMin       = -95.0;
            double truncateMax       = -30.0;
            double filterCoefficient = 0.75;

            double[,] dbSpectrogramNorm = SpectrogramTools.NormaliseSpectrogramMatrix(dbSpectrogramData, truncateMin, truncateMax, filterCoefficient);

            truncateMin = 0;
            truncateMax = 50;

            // nr = noise reduced
            double[,] nrSpectrogramNorm = SpectrogramTools.NormaliseSpectrogramMatrix(nrSpectrogramData, truncateMin, truncateMax, filterCoefficient);

            nrSpectrogramNorm = MatrixTools.BoundMatrix(nrSpectrogramNorm, 0.0, 0.9);
            nrSpectrogramNorm = MatrixTools.SquareRootOfValues(nrSpectrogramNorm);
            nrSpectrogramNorm = DataTools.normalise(nrSpectrogramNorm);

            // create image from normalised data
            var image = SpectrogramTools.CreateFalseColourDecibelSpectrogramForZooming(dbSpectrogramNorm, nrSpectrogramNorm, hits);

            return(image);
        }
Ejemplo n.º 4
0
        /// <summary>
        /// This method produces four spectrograms using four different values of neighbour hood decibel threshold.
        /// It can be used for test purposes.
        /// </summary>
        /// <param name="deciBelSpectrogram">the noisy decibel spectrogram</param>
        /// <param name="xAxisInterval">x-axis tic interval</param>
        /// <param name="stepDuration">the x-axis times scale</param>
        /// <param name="nyquist">max freq value</param>
        /// <param name="hzInterval">y-axis frequency scale</param>
        /// <returns>Image containing four sepctrograms</returns>
        public static Image ModalNoiseRemovalAndGetSonograms(
            double[,] deciBelSpectrogram,
            TimeSpan xAxisInterval,
            TimeSpan stepDuration,
            int nyquist,
            int hzInterval)
        {
            // The number of SDs above the mean for noise removal.
            // Set sdCount = -0.5 becuase when sdCount >= zero, noies removal is a bit severe for environmental recordings.
            var sdCount = -0.5;
            var nrt     = NoiseReductionType.Modal;
            var tuple   = SNR.NoiseReduce(deciBelSpectrogram, nrt, sdCount);

            var noiseReducedSpectrogram1 = tuple.Item1;

            var title  = "title1";
            var image1 = DrawSonogram(noiseReducedSpectrogram1, xAxisInterval, stepDuration, nyquist, hzInterval, title);

            double dBThreshold = 0.0; // SPECTRAL dB THRESHOLD for smoothing background

            double[,] noiseReducedSpectrogram2 = SNR.RemoveNeighbourhoodBackgroundNoise(noiseReducedSpectrogram1, dBThreshold);
            title = "title2";
            var image2 = DrawSonogram(noiseReducedSpectrogram2, xAxisInterval, stepDuration, nyquist, hzInterval, title);

            // SPECTRAL dB THRESHOLD for smoothing background
            dBThreshold = 3.0;
            noiseReducedSpectrogram2 = SNR.RemoveNeighbourhoodBackgroundNoise(noiseReducedSpectrogram1, dBThreshold);
            title = "title3";
            var image3 = DrawSonogram(noiseReducedSpectrogram2, xAxisInterval, stepDuration, nyquist, hzInterval, title);

            // SPECTRAL dB THRESHOLD for smoothing background
            dBThreshold = 10.0;
            noiseReducedSpectrogram2 = SNR.RemoveNeighbourhoodBackgroundNoise(noiseReducedSpectrogram1, dBThreshold);
            title = "title4";
            var image4 = DrawSonogram(noiseReducedSpectrogram2, xAxisInterval, stepDuration, nyquist, hzInterval, title);

            var array = new Image[4];

            array[0] = image1;
            array[1] = image2;
            array[2] = image3;
            array[3] = image4;
            var combinedImage = ImageTools.CombineImagesVertically(array);

            return(combinedImage);
        }
        /// <summary>
        /// Initializes a new instance of the <see cref="DecibelSpectrogram"/> class.
        /// </summary>
        public DecibelSpectrogram(AmplitudeSpectrogram amplitudeSpectrogram)
        {
            this.Configuration = amplitudeSpectrogram.Configuration;
            this.Attributes    = amplitudeSpectrogram.Attributes;

            // (ii) CONVERT AMPLITUDES TO DECIBELS
            this.Data = MFCCStuff.DecibelSpectra(amplitudeSpectrogram.Data, this.Attributes.WindowPower, this.Attributes.SampleRate, this.Attributes.Epsilon);

            // (iii) NOISE REDUCTION
            var tuple = SNR.NoiseReduce(this.Data, this.Configuration.NoiseReductionType, this.Configuration.NoiseReductionParameter);

            this.Data = tuple.Item1;   // store data matrix

            if (this.SnrData != null)
            {
                this.SnrData.ModalNoiseProfile = tuple.Item2; // store the full bandwidth modal noise profile
            }
        }
        }//end CONSTRUCTOR

        public override void Make(double[,] amplitudeM)
        {
            double[,] m = amplitudeM;

            // (i) IF REQUIRED CONVERT TO FULL BAND WIDTH MEL SCALE
            // Make sure you have Configuration.MelBinCount somewhere
            if (this.Configuration.DoMelScale)
            {
                m = MFCCStuff.MelFilterBank(m, this.Configuration.MelBinCount, this.NyquistFrequency, 0, this.NyquistFrequency); // using the Greg integral
            }

            // (ii) CONVERT AMPLITUDES TO DECIBELS
            m = MFCCStuff.DecibelSpectra(m, this.Configuration.WindowPower, this.SampleRate, this.Configuration.epsilon);

            // (iii) NOISE REDUCTION
            var tuple = SNR.NoiseReduce(m, this.Configuration.NoiseReductionType, this.Configuration.NoiseReductionParameter);

            this.Data = tuple.Item1;   // store data matrix

            if (this.SnrData != null)
            {
                this.SnrData.ModalNoiseProfile = tuple.Item2; // store the full bandwidth modal noise profile
            }
        }
Ejemplo n.º 7
0
        public static void Execute(Arguments arguments)
        {
            if (arguments == null)
            {
                arguments = Dev();
            }

            LoggedConsole.WriteLine("DATE AND TIME:" + DateTime.Now);
            LoggedConsole.WriteLine("Syntactic Pattern Recognition\n");
            //StringBuilder sb = new StringBuilder("DATE AND TIME:" + DateTime.Now + "\n");
            //sb.Append("SCAN ALL RECORDINGS IN A DIRECTORY USING HTK-RECOGNISER\n");

            Log.Verbosity = 1;

            FileInfo      recordingPath = arguments.Source;
            FileInfo      iniPath       = arguments.Config;
            DirectoryInfo outputDir     = arguments.Output;
            string        opFName       = "SPR-output.txt";
            string        opPath        = outputDir + opFName;

            Log.WriteIfVerbose("# Output folder =" + outputDir);

            // A: READ PARAMETER VALUES FROM INI FILE
            var config = new ConfigDictionary(iniPath);
            Dictionary <string, string> dict = config.GetTable();

            Dictionary <string, string> .KeyCollection keys = dict.Keys;

            string callName     = dict[key_CALL_NAME];
            double frameOverlap = Convert.ToDouble(dict[key_FRAME_OVERLAP]);
            //SPT PARAMETERS
            double intensityThreshold   = Convert.ToDouble(dict[key_SPT_INTENSITY_THRESHOLD]);
            int    smallLengthThreshold = Convert.ToInt32(dict[key_SPT_SMALL_LENGTH_THRESHOLD]);
            //WHIPBIRD PARAMETERS
            int    whistle_MinHz          = int.Parse(dict[key_WHISTLE_MIN_HZ]);
            int    whistle_MaxHz          = int.Parse(dict[key_WHISTLE_MAX_HZ]);
            double optimumWhistleDuration = double.Parse(dict[key_WHISTLE_DURATION]);   //optimum duration of whistle in seconds
            int    whip_MinHz             = (dict.ContainsKey(key_WHIP_MIN_HZ)) ? int.Parse(dict[key_WHIP_MIN_HZ]) : 0;
            int    whip_MaxHz             = (dict.ContainsKey(key_WHIP_MAX_HZ)) ? int.Parse(dict[key_WHIP_MAX_HZ]) : 0;
            double whipDuration           = (dict.ContainsKey(key_WHIP_DURATION)) ? double.Parse(dict[key_WHIP_DURATION]) : 0.0; //duration of whip in seconds
            //CURLEW PARAMETERS
            double minDuration = (dict.ContainsKey(key_MIN_DURATION)) ? double.Parse(dict[key_MIN_DURATION]) : 0.0;              //min duration of call in seconds
            double maxDuration = (dict.ContainsKey(key_MAX_DURATION)) ? double.Parse(dict[key_MAX_DURATION]) : 0.0;              //duration of call in seconds

            double eventThreshold = double.Parse(dict[key_EVENT_THRESHOLD]);                                                     //min score for an acceptable event
            int    DRAW_SONOGRAMS = Convert.ToInt16(dict[key_DRAW_SONOGRAMS]);

            // B: CHECK to see if conversion from .MP3 to .WAV is necessary
            var destinationAudioFile = recordingPath;

            //LOAD RECORDING AND MAKE SONOGRAM
            BaseSonogram sonogram = null;

            using (var recording = new AudioRecording(destinationAudioFile.FullName))
            {
                // if (recording.SampleRate != 22050) recording.ConvertSampleRate22kHz(); // THIS METHOD CALL IS OBSOLETE

                var sonoConfig = new SonogramConfig
                {
                    NoiseReductionType = NoiseReductionType.None,
                    //NoiseReductionType = NoiseReductionType.STANDARD,
                    WindowOverlap = frameOverlap,
                };
                sonogram = new SpectrogramStandard(sonoConfig, recording.WavReader);
            }

            List <AcousticEvent> predictedEvents = null;

            double[,] hits = null;
            double[] scores = null;

            var audioFileName = Path.GetFileNameWithoutExtension(destinationAudioFile.FullName);

            if (callName.Equals("WHIPBIRD"))
            {
                //SPT
                var result1 = SPT.doSPT(sonogram, intensityThreshold, smallLengthThreshold);
                //SPR
                Log.WriteLine("SPR start: intensity threshold = " + intensityThreshold);
                int    slope       = 0;   //degrees of the circle. i.e. 90 = vertical line.
                double sensitivity = 0.7; //lower value = more sensitive
                var    mHori       = MarkLine(result1.Item1, slope, smallLengthThreshold, intensityThreshold, sensitivity);
                slope       = 87;         //84
                sensitivity = 0.8;        //lower value = more sensitive
                var mVert = MarkLine(result1.Item1, slope, smallLengthThreshold - 4, intensityThreshold + 1, sensitivity);
                Log.WriteLine("SPR finished");
                Log.WriteLine("Extract Whipbird calls - start");

                int minBound_Whistle = (int)(whistle_MinHz / sonogram.FBinWidth);
                int maxBound_Whistle = (int)(whistle_MaxHz / sonogram.FBinWidth);
                int whistleFrames    = (int)(sonogram.FramesPerSecond * optimumWhistleDuration); //86 = frames/sec.
                int minBound_Whip    = (int)(whip_MinHz / sonogram.FBinWidth);
                int maxBound_Whip    = (int)(whip_MaxHz / sonogram.FBinWidth);
                int whipFrames       = (int)(sonogram.FramesPerSecond * whipDuration); //86 = frames/sec.
                var result3          = DetectWhipBird(mHori, mVert, minBound_Whistle, maxBound_Whistle, whistleFrames, minBound_Whip, maxBound_Whip, whipFrames, smallLengthThreshold);
                scores = result3.Item1;
                hits   = DataTools.AddMatrices(mHori, mVert);

                predictedEvents = AcousticEvent.ConvertScoreArray2Events(
                    scores,
                    whip_MinHz,
                    whip_MaxHz,
                    sonogram.FramesPerSecond,
                    sonogram.FBinWidth,
                    eventThreshold,
                    minDuration,
                    maxDuration,
                    TimeSpan.Zero);
                foreach (AcousticEvent ev in predictedEvents)
                {
                    ev.FileName = audioFileName;
                    ev.Name     = callName;
                }

                sonogram.Data = result1.Item1;
                Log.WriteLine("Extract Whipbird calls - finished");
            }
            else if (callName.Equals("CURLEW"))
            {
                //SPT
                double backgroundThreshold = 4.0;
                var    result1             = SNR.NoiseReduce(sonogram.Data, NoiseReductionType.Standard, backgroundThreshold);
                //var result1 = SPT.doSPT(sonogram, intensityThreshold, smallLengthThreshold);
                //var result1 = doNoiseRemoval(sonogram, intensityThreshold, smallLengthThreshold);

                //SPR
                Log.WriteLine("SPR start: intensity threshold = " + intensityThreshold);
                int    slope       = 20;  //degrees of the circle. i.e. 90 = vertical line.
                double sensitivity = 0.8; //lower value = more sensitive
                var    mHori       = MarkLine(result1.Item1, slope, smallLengthThreshold, intensityThreshold, sensitivity);
                slope       = 160;
                sensitivity = 0.8;        //lower value = more sensitive
                var mVert = MarkLine(result1.Item1, slope, smallLengthThreshold - 3, intensityThreshold + 1, sensitivity);
                Log.WriteLine("SPR finished");

                //detect curlew calls
                int minBound_Whistle = (int)(whistle_MinHz / sonogram.FBinWidth);
                int maxBound_Whistle = (int)(whistle_MaxHz / sonogram.FBinWidth);
                int whistleFrames    = (int)(sonogram.FramesPerSecond * optimumWhistleDuration);
                var result3          = DetectCurlew(mHori, mVert, minBound_Whistle, maxBound_Whistle, whistleFrames, smallLengthThreshold);

                //process curlew scores - look for curlew characteristic periodicity
                double minPeriod        = 1.2;
                double maxPeriod        = 1.8;
                int    minPeriod_frames = (int)Math.Round(sonogram.FramesPerSecond * minPeriod);
                int    maxPeriod_frames = (int)Math.Round(sonogram.FramesPerSecond * maxPeriod);
                scores = DataTools.filterMovingAverage(result3.Item1, 21);
                scores = DataTools.PeriodicityDetection(scores, minPeriod_frames, maxPeriod_frames);

                //extract events
                predictedEvents = AcousticEvent.ConvertScoreArray2Events(
                    scores,
                    whistle_MinHz,
                    whistle_MaxHz,
                    sonogram.FramesPerSecond,
                    sonogram.FBinWidth,
                    eventThreshold,
                    minDuration,
                    maxDuration,
                    TimeSpan.Zero);
                foreach (AcousticEvent ev in predictedEvents)
                {
                    ev.FileName = audioFileName;
                    ev.Name     = callName;
                }

                hits          = DataTools.AddMatrices(mHori, mVert);
                sonogram.Data = result1.Item1;
                Log.WriteLine("Extract Curlew calls - finished");
            }
            else if (callName.Equals("CURRAWONG"))
            {
                //SPT
                var result1 = SPT.doSPT(sonogram, intensityThreshold, smallLengthThreshold);
                //SPR
                Log.WriteLine("SPR start: intensity threshold = " + intensityThreshold);
                int slope = 70;           //degrees of the circle. i.e. 90 = vertical line.
                //slope = 210;
                double sensitivity = 0.7; //lower value = more sensitive
                var    mHori       = MarkLine(result1.Item1, slope, smallLengthThreshold, intensityThreshold, sensitivity);
                slope = 110;
                //slope = 340;
                sensitivity = 0.7;        //lower value = more sensitive
                var mVert = MarkLine(result1.Item1, slope, smallLengthThreshold - 3, intensityThreshold + 1, sensitivity);
                Log.WriteLine("SPR finished");

                int minBound_Whistle = (int)(whistle_MinHz / sonogram.FBinWidth);
                int maxBound_Whistle = (int)(whistle_MaxHz / sonogram.FBinWidth);
                int whistleFrames    = (int)(sonogram.FramesPerSecond * optimumWhistleDuration); //86 = frames/sec.
                var result3          = DetectCurlew(mHori, mVert, minBound_Whistle, maxBound_Whistle, whistleFrames + 10, smallLengthThreshold);
                scores = result3.Item1;
                hits   = DataTools.AddMatrices(mHori, mVert);

                predictedEvents = AcousticEvent.ConvertIntensityArray2Events(
                    scores,
                    TimeSpan.Zero,
                    whistle_MinHz,
                    whistle_MaxHz,
                    sonogram.FramesPerSecond,
                    sonogram.FBinWidth,
                    eventThreshold,
                    0.5,
                    maxDuration);
                foreach (AcousticEvent ev in predictedEvents)
                {
                    ev.FileName = audioFileName;
                    //ev.Name = callName;
                }
            }

            //write event count to results file.
            double sigDuration = sonogram.Duration.TotalSeconds;
            //string fname = Path.GetFileName(recordingPath);
            int count = predictedEvents.Count;

            Log.WriteIfVerbose("Number of Events: " + count);
            string str = string.Format("{0}\t{1}\t{2}", callName, sigDuration, count);

            FileTools.WriteTextFile(opPath, AcousticEvent.WriteEvents(predictedEvents, str).ToString());

            // SAVE IMAGE
            string imageName = outputDir + audioFileName;
            string imagePath = imageName + ".png";

            if (File.Exists(imagePath))
            {
                int suffix = 1;
                while (File.Exists(imageName + "." + suffix.ToString() + ".png"))
                {
                    suffix++;
                }
                //{
                //    suffix = (suffix == string.Empty) ? "1" : (int.Parse(suffix) + 1).ToString();
                //}
                //File.Delete(outputDir + audioFileName + "." + suffix.ToString() + ".png");
                File.Move(imagePath, imageName + "." + suffix.ToString() + ".png");
            }
            //string newPath = imagePath + suffix + ".png";
            if (DRAW_SONOGRAMS == 2)
            {
                DrawSonogram(sonogram, imagePath, hits, scores, predictedEvents, eventThreshold);
            }
            else
            if ((DRAW_SONOGRAMS == 1) && (predictedEvents.Count > 0))
            {
                DrawSonogram(sonogram, imagePath, hits, scores, predictedEvents, eventThreshold);
            }

            Log.WriteIfVerbose("Image saved to: " + imagePath);
            //string savePath = outputDir + Path.GetFileNameWithoutExtension(recordingPath);
            //string suffix = string.Empty;
            //Image im = sonogram.GetImage(false, false);
            //string newPath = savePath + suffix + ".jpg";
            //im.Save(newPath);

            LoggedConsole.WriteLine("\nFINISHED RECORDING!");
            Console.ReadLine();
        }