Ejemplo n.º 1
0
        /// <summary>
        /// Calculates the safety factor.
        /// </summary>
        /// <param name="inNMM">The acting forces.</param>
        /// <returns>Safety factor. Resistance forces to acting forces ratio.</returns>
        public double SafetyFactor(InternalForcesContainer inNMM)
        {
            double safetyFactor = -1.0;

            solver.SolveResistance(inNMM.ForceFx, -inNMM.MomentMy, inNMM.MomentMz);
            SetOfForces solveNMM = solver.GetInternalForces(Autodesk.CodeChecking.Concrete.ResultType.Section);

            if (Math.Abs(inNMM.ForceFx) > Math.Abs(inNMM.MomentMy))
            {
                if (Math.Abs(inNMM.ForceFx) > Math.Abs(inNMM.MomentMz))
                {
                    safetyFactor = solveNMM.AxialForce / inNMM.ForceFx;
                }
                else
                {
                    safetyFactor = solveNMM.MomentY / inNMM.MomentMz;
                }
            }
            else if (Math.Abs(inNMM.MomentMy) > Math.Abs(inNMM.MomentMz))
            {
                safetyFactor = solveNMM.MomentX / -inNMM.MomentMy;
            }
            else
            {
                safetyFactor = solveNMM.MomentY / inNMM.MomentMz;
            }
            return(safetyFactor);
        }
Ejemplo n.º 2
0
        /// <summary>
        /// Case 14: Calculation of capacity state in symmetric section for bidirectional bending with axial force
        /// </summary>
        public void Case14()
        {
            // geometry definition
            Geometry geometry = new Geometry();

            geometry.Add(0.0, 0.0);
            geometry.Add(0.3, 0.0);
            geometry.Add(0.3, 0.45);
            geometry.Add(0.0, 0.45);
            // rebars definition
            List <Rebar> rebars = new List <Rebar>();

            rebars.Add(new Rebar(0.15, 0.04, 0.025977 * 0.025977 * Math.PI / 4.0));
            // concrete parameters
            Concrete concrete = new Concrete();

            concrete.SetStrainStressModelRectangular(21.36e6, 0.0035, 35e9, 0.8);
            // steel parameters
            Steel steel = new Steel();

            steel.SetModelIdealElastoPlastic(310e6, 0.01, 200e9);
            // solver creation and parameterization
            RCSolver solver = RCSolver.CreateNewSolver(geometry);

            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveResistance(200E3, -96E3, -24E3);
            // result for rebars
            SetOfForces forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            SetOfForces forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Point2D     Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            double      Acc            = solver.GetConcreteStressArea();
            // result for RC section
            SetOfForces forces = solver.GetInternalForces(ResultType.Section);
            double      angle  = solver.GetNeutralAxisAngle();
            double      dist   = solver.GetNeutralAxisDistance();

            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 14: Calculation of capacity state in symmetric section for bidirectional bending with axial force ");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
            sb.AppendLine(FormatOutput("dist", dist, 6));
            sb.AppendLine(FormatOutput("angle", angle, 6));
        }
Ejemplo n.º 3
0
        /// <summary>
        /// Case 12: Calculation of capacity state in symmetric section for bending moment Mx with axial force
        /// </summary>
        public void Case12()
        {
            // Case 12a
            // geometry definition
            Geometry geometry = new Geometry();

            geometry.Add(0.0, 0.0);
            geometry.Add(0.3, 0.0);
            geometry.Add(0.3, 0.6);
            geometry.Add(0.0, 0.6);
            // rebars definition
            List <Rebar> rebars    = new List <Rebar>();
            double       rebarArea = 0.012 * 0.012 * Math.PI / 4.0;

            rebars.Add(new Rebar(0.05, 0.05, rebarArea));
            rebars.Add(new Rebar(0.05, 0.55, rebarArea));
            rebars.Add(new Rebar(0.25, 0.55, rebarArea));
            rebars.Add(new Rebar(0.25, 0.05, rebarArea));
            // concrete parameters
            Concrete concrete = new Concrete();

            concrete.SetStrainStressModelLinear(20e6, 0.0035, 30e9);
            // steel parameters
            Steel steel = new Steel();

            steel.SetModelIdealElastoPlastic(500e6, 0.075, 200e9);
            // solver creation and parameterization
            RCSolver solver = RCSolver.CreateNewSolver(geometry);

            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveResistance(43979.98E3, -3465.40E3, 0);
            // result for rebars
            SetOfForces forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            SetOfForces forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Point2D     Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            double      Acc            = solver.GetConcreteStressArea();
            // result for RC section
            SetOfForces forces = solver.GetInternalForces(ResultType.Section);
            double      angle  = solver.GetNeutralAxisAngle();
            double      dist   = solver.GetNeutralAxisDistance();

            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 12a:  Calculation of capacity state in symmetric section for bending moment Mx with axial force ");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
            sb.AppendLine(FormatOutput("dist", dist, 6));
            sb.AppendLine(FormatOutput("angle", angle, 6));

            // Case 12b
            // rebars definition
            rebars.Clear();
            rebarArea = 0.016 * 0.016 * Math.PI / 4.0;
            rebars.Add(new Rebar(0.05, 0.05, rebarArea));
            rebars.Add(new Rebar(0.05, 0.55, rebarArea));
            rebars.Add(new Rebar(0.25, 0.55, rebarArea));
            rebars.Add(new Rebar(0.25, 0.05, rebarArea));
            // concrete parameters
            concrete.SetStrainStressModelBiLinear(30e6, 0.0035, 32e9, 0.0020);
            // steel parameters
            steel.DesignStrength      = 400e6;
            steel.HardeningFactor     = 1.0;
            steel.ModulusOfElasticity = 205e9;
            steel.StrainUltimateLimit = 0.1;
            // solver parameterization
            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveResistance(114.8397E3, -5.634275E3, 0);
            // result for rebars
            forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            Acc            = solver.GetConcreteStressArea();
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 12b:Calculation of capacity state in symmetric section for bending moment Mx with axial force");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));

            // Case 12c
            // concrete parameters
            concrete.SetStrainStressModelPowerRectangular(30e6, 0.0035, 32e9, 0.002, 1.4);
            // steel parameters
            steel.DesignStrength      = 400e6;
            steel.HardeningFactor     = 1.0;
            steel.ModulusOfElasticity = 200e9;
            steel.StrainUltimateLimit = 0.1;
            // solver parameterization
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveResistance(4.41023E3, -0.1662045455E3, 0);
            // result for rebars
            forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            Acc            = solver.GetConcreteStressArea();
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 12c: Calculation of capacity state in symmetric section for bending moment Mx with axial force ");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
        }
Ejemplo n.º 4
0
        /// <summary>
        /// Case 15: Calculation of capacity state in asymmetric section for bidirectional bending with axial force
        /// </summary>
        public void Case15()
        {
            // Case 15a
            // geometry definition
            Geometry geometry = new Geometry();

            geometry.Add(0.00, 0.00);
            geometry.Add(0.00, 0.60);
            geometry.Add(0.25, 0.60);
            geometry.Add(0.25, 0.25);
            geometry.Add(0.70, 0.25);
            geometry.Add(0.70, 0.00);
            // rebars definition
            List <Rebar> rebars    = new List <Rebar>();
            double       rebarArea = 0.020 * 0.020 * Math.PI / 4.0;

            rebars.Add(new Rebar(0.05, 0.05, rebarArea));
            rebars.Add(new Rebar(0.05, 0.55, rebarArea));
            rebars.Add(new Rebar(0.20, 0.55, rebarArea));
            rebars.Add(new Rebar(0.20, 0.05, rebarArea));
            rebars.Add(new Rebar(0.65, 0.05, rebarArea));
            rebars.Add(new Rebar(0.65, 0.20, rebarArea));
            rebars.Add(new Rebar(0.05, 0.20, rebarArea));
            // concrete parameters
            Concrete concrete = new Concrete();

            concrete.SetStrainStressModelRectangular(20e6, 0.0035, 35e9, 0.8);
            // steel parameters
            Steel steel = new Steel();

            steel.SetModelIdealElastoPlastic(310e6, 0.075, 200e9);
            // solver creation and parameterization
            RCSolver solver = RCSolver.CreateNewSolver(geometry);

            solver.SetRebars(rebars);
            solver.SetConcrete(concrete);
            solver.SetSteel(steel);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for rebars
            SetOfForces forcesRebar = solver.GetInternalForces(ResultType.Rebars);
            // result for concrete
            SetOfForces forcesConcrete = solver.GetInternalForces(ResultType.Concrete);
            Point2D     Gcc            = solver.GetStressGravityCenter(ResultType.Concrete);
            double      Acc            = solver.GetConcreteStressArea();
            // result for RC section
            SetOfForces forces = solver.GetInternalForces(ResultType.Section);
            double      angle  = solver.GetNeutralAxisAngle();
            double      dist   = solver.GetNeutralAxisDistance();

            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15a: Calculation of capacity state in asymmetric section for bidirectional bending with axial force ");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("Ns", forcesRebar.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxs", forcesRebar.MomentX, 6));
            sb.AppendLine(FormatOutput("Mys", forcesRebar.MomentY, 6));
            sb.AppendLine(FormatOutput("Ac", Acc, 6));
            sb.AppendLine(FormatOutput("Gcx", Gcc.X, 6));
            sb.AppendLine(FormatOutput("Gcy", Gcc.Y, 6));
            sb.AppendLine(FormatOutput("Nc", forcesConcrete.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mxc", forcesConcrete.MomentX, 6));
            sb.AppendLine(FormatOutput("Myc", forcesConcrete.MomentY, 6));
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
            sb.AppendLine(FormatOutput("dist", dist, 6));
            sb.AppendLine(FormatOutput("angle", angle, 6));


            // Case 15b
            // concrete parameters (rectangular)
            concrete.SetStrainStressModelRectangular(20e6, 0.0035, 35e9, 0.8);
            // solver parameterization
            solver.SetConcrete(concrete);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15b: Calculation of capacity state in asymmetric section for bidirectional bending with axial force (rectangular)");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));

            // concrete parameters(linear)
            concrete.SetStrainStressModelLinear(25e6, 0.0035, 32e9);
            // solver parameterization
            solver.SetConcrete(concrete);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15b: Calculation of capacity state in asymmetric section for bidirectional bending with axial force (linear)");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));

            // concrete parameters (bilinear)
            concrete.SetStrainStressModelBiLinear(25e6, 0.0035, 32e9, 0.0020);
            // solver parameterization
            solver.SetConcrete(concrete);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15b: Calculation of capacity state in asymmetric section for bidirectional bending with axial force (bilinear)");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));

            // concrete parameters (parabolic-rectangular)
            concrete.SetStrainStressModelParabolicRectangular(25e6, 0.0035, 32e9, 0.0020);
            // solver parameterization
            solver.SetConcrete(concrete);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15b: Calculation of capacity state in asymmetric section for bidirectional bending with axial force (parabolic-rectangular)");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));

            // concrete parameters (power-rectangular)
            concrete.SetStrainStressModelPowerRectangular(25e6, 0.0035, 32e9, 0.002, 1.5);
            // solver parameterization
            solver.SetConcrete(concrete);
            //calulation
            solver.SolveResistance(72.4471E3, -28.9825E3, 2.5743E3);
            // result for RC section
            forces = solver.GetInternalForces(ResultType.Section);
            // result presentation
            sb.AppendLine();
            sb.AppendLine(decoration);
            sb.AppendLine("Case 15b: Calculation of capacity state in asymmetric section for bidirectional bending with axial force (parabolic-rectangular)");
            sb.AppendLine(decoration);
            sb.AppendLine(FormatOutput("N", forces.AxialForce, 6));
            sb.AppendLine(FormatOutput("Mx", forces.MomentX, 6));
            sb.AppendLine(FormatOutput("My", forces.MomentY, 6));
        }