public static void TestQueueResizing(IUnmanagedMemoryPool pool)
        {
            Random random = new Random(5);

            var         queue        = new QuickQueue <int>(4, pool);
            Queue <int> controlQueue = new Queue <int>();

            for (int iterationIndex = 0; iterationIndex < 1000000; ++iterationIndex)
            {
                if (random.NextDouble() < 0.7)
                {
                    queue.Enqueue(iterationIndex, pool);
                    controlQueue.Enqueue(iterationIndex);
                }
                if (random.NextDouble() < 0.2)
                {
                    queue.Dequeue();
                    controlQueue.Dequeue();
                }
                if (iterationIndex % 1000 == 0)
                {
                    queue.EnsureCapacity(queue.Count * 3, pool);
                }
                else if (iterationIndex % 7777 == 0)
                {
                    queue.Compact(pool);
                }
            }

            Debug.Assert(queue.Count == controlQueue.Count, "e");
            while (queue.Count > 0)
            {
                var a = queue.Dequeue();
                var b = controlQueue.Dequeue();
                Debug.Assert(a == b);
                Debug.Assert(queue.Count == controlQueue.Count);
            }

            queue.Dispose(pool);
        }
Ejemplo n.º 2
0
        unsafe void CollectSubtreesForNodeDirect(int nodeIndex, int remainingDepth, ref QuickList <int> subtrees, ref QuickQueue <int> internalNodes, out float treeletCost)
        {
            internalNodes.Enqueue(nodeIndex);

            treeletCost = 0;
            var node     = nodes + nodeIndex;
            var children = &node->ChildA;
            var bounds   = &node->A;

            --remainingDepth;
            if (remainingDepth >= 0)
            {
                for (int i = 0; i < node->ChildCount; ++i)
                {
                    if (children[i] >= 0)
                    {
                        treeletCost += ComputeBoundsMetric(ref bounds[i]);
                        float childCost;
                        CollectSubtreesForNodeDirect(children[i], remainingDepth, ref subtrees, ref internalNodes, out childCost);
                        treeletCost += childCost;
                    }
                    else
                    {
                        //It's a leaf, immediately add it to subtrees.
                        subtrees.Add(children[i]);
                    }
                }
            }
            else
            {
                //Recursion has bottomed out. Add every child.
                //Once again, note that the treelet costs of these nodes are not considered, even if they are internal.
                //That's because the subtree internal nodes cannot change size due to the refinement.
                for (int i = 0; i < node->ChildCount; ++i)
                {
                    subtrees.Add(children[i]);
                }
            }
        }
        unsafe void CollectSubtreesForNodeDirect(int nodeIndex, int remainingDepth, ref QuickList<int> subtrees, ref QuickQueue<int> internalNodes, out float treeletCost)
        {
            internalNodes.Enqueue(nodeIndex);

            treeletCost = 0;
            var node = nodes + nodeIndex;
            var children = &node->ChildA;
            var bounds = &node->A;

            --remainingDepth;
            if (remainingDepth >= 0)
            {
                for (int i = 0; i < node->ChildCount; ++i)
                {
                    if (children[i] >= 0)
                    {
                        treeletCost += ComputeBoundsMetric(ref bounds[i]);
                        float childCost;
                        CollectSubtreesForNodeDirect(children[i], remainingDepth, ref subtrees, ref internalNodes, out childCost);
                        treeletCost += childCost;
                    }
                    else
                    {
                        //It's a leaf, immediately add it to subtrees.
                        subtrees.Add(children[i]);
                    }
                }
            }
            else
            {
                //Recursion has bottomed out. Add every child.
                //Once again, note that the treelet costs of these nodes are not considered, even if they are internal.
                //That's because the subtree internal nodes cannot change size due to the refinement.
                for (int i = 0; i < node->ChildCount; ++i)
                {
                    subtrees.Add(children[i]);
                }
            }
        }
Ejemplo n.º 4
0
        public static void TestQueueResizing()
        {
            Random random = new Random(5);
            UnsafeBufferPool <int> pool         = new UnsafeBufferPool <int>();
            QuickQueue <int>       queue        = new QuickQueue <int>(pool, 2);
            Queue <int>            controlQueue = new Queue <int>();

            for (int iterationIndex = 0; iterationIndex < 1000000; ++iterationIndex)
            {
                if (random.NextDouble() < 0.7)
                {
                    queue.Enqueue(iterationIndex);
                    controlQueue.Enqueue(iterationIndex);
                }
                if (random.NextDouble() < 0.2)
                {
                    queue.Dequeue();
                    controlQueue.Dequeue();
                }
                if (iterationIndex % 1000 == 0)
                {
                    queue.EnsureCapacity(queue.Count * 3);
                }
                else if (iterationIndex % 7777 == 0)
                {
                    queue.Compact();
                }
            }

            Assert.IsTrue(queue.Count == controlQueue.Count);
            while (queue.Count > 0)
            {
                var a = queue.Dequeue();
                var b = controlQueue.Dequeue();
                Assert.IsTrue(a == b);
                Assert.IsTrue(queue.Count == controlQueue.Count);
            }
        }
Ejemplo n.º 5
0
        void CommandReadSubcodeQ()
        {
            bool playing   = pce.CDAudio.Mode != CDAudio.CDAudioMode_Stopped;
            int  sectorNum = playing ? pce.CDAudio.CurrentSector : CurrentReadingSector;

            DataIn.Clear();

            switch (pce.CDAudio.Mode)
            {
            case CDAudio.CDAudioMode_Playing: DataIn.Enqueue(0); break;

            case CDAudio.CDAudioMode_Paused: DataIn.Enqueue(2); break;

            case CDAudio.CDAudioMode_Stopped: DataIn.Enqueue(3); break;
            }

            DiscSectorReader.ReadLBA_SubQ(sectorNum, out subchannelQ);
            DataIn.Enqueue(subchannelQ.q_status);             //status (control and q-mode; control is useful to know if it's a data or audio track)
            DataIn.Enqueue(subchannelQ.q_tno.BCDValue);       // track //zero 03-jul-2015 - did I adapt this right>
            DataIn.Enqueue(subchannelQ.q_index.BCDValue);     // index //zero 03-jul-2015 - did I adapt this right>
            DataIn.Enqueue(subchannelQ.min.BCDValue);         // M(rel)
            DataIn.Enqueue(subchannelQ.sec.BCDValue);         // S(rel)
            DataIn.Enqueue(subchannelQ.frame.BCDValue);       // F(rel)
            DataIn.Enqueue(subchannelQ.ap_min.BCDValue);      // M(abs)
            DataIn.Enqueue(subchannelQ.ap_sec.BCDValue);      // S(abs)
            DataIn.Enqueue(subchannelQ.ap_frame.BCDValue);    // F(abs)

            SetPhase(BusPhase_DataIn);
        }
Ejemplo n.º 6
0
        void CommandReadSubcodeQ()
        {
            bool playing     = pce.CDAudio.Mode != CDAudio.CDAudioMode_Stopped;
            var  sectorEntry = disc.ReadLBA_SectorEntry(playing ? pce.CDAudio.CurrentSector : CurrentReadingSector);

            DataIn.Clear();

            switch (pce.CDAudio.Mode)
            {
            case CDAudio.CDAudioMode_Playing: DataIn.Enqueue(0); break;

            case CDAudio.CDAudioMode_Paused: DataIn.Enqueue(2); break;

            case CDAudio.CDAudioMode_Stopped: DataIn.Enqueue(3); break;
            }

            DataIn.Enqueue(sectorEntry.q_status);                      // I do not know what status is
            DataIn.Enqueue(sectorEntry.q_tno.BCDValue);                // track
            DataIn.Enqueue(sectorEntry.q_index.BCDValue);              // index
            DataIn.Enqueue(sectorEntry.q_min.BCDValue);                // M(rel)
            DataIn.Enqueue(sectorEntry.q_sec.BCDValue);                // S(rel)
            DataIn.Enqueue(sectorEntry.q_frame.BCDValue);              // F(rel)
            DataIn.Enqueue(sectorEntry.q_amin.BCDValue);               // M(abs)
            DataIn.Enqueue(sectorEntry.q_asec.BCDValue);               // S(abs)
            DataIn.Enqueue(sectorEntry.q_aframe.BCDValue);             // F(abs)

            SetPhase(BusPhase_DataIn);
        }
Ejemplo n.º 7
0
        void CommandReadSubcodeQ()
        {
            bool playing   = pce.CDAudio.Mode != CDAudio.CDAudioMode_Stopped;
            int  sectorNum = playing ? pce.CDAudio.CurrentSector : CurrentReadingSector;

            DataIn.Clear();

            switch (pce.CDAudio.Mode)
            {
            case CDAudio.CDAudioMode_Playing: DataIn.Enqueue(0); break;

            case CDAudio.CDAudioMode_Paused: DataIn.Enqueue(2); break;

            case CDAudio.CDAudioMode_Stopped: DataIn.Enqueue(3); break;
            }

            subcodeReader.ReadLBA_SubchannelQ(sectorNum, ref subchannelQ);
            DataIn.Enqueue(subchannelQ.q_status);             // I do not know what status is
            DataIn.Enqueue(subchannelQ.q_tno);                // track
            DataIn.Enqueue(subchannelQ.q_index);              // index
            DataIn.Enqueue(subchannelQ.min.BCDValue);         // M(rel)
            DataIn.Enqueue(subchannelQ.sec.BCDValue);         // S(rel)
            DataIn.Enqueue(subchannelQ.frame.BCDValue);       // F(rel)
            DataIn.Enqueue(subchannelQ.ap_min.BCDValue);      // M(abs)
            DataIn.Enqueue(subchannelQ.ap_sec.BCDValue);      // S(abs)
            DataIn.Enqueue(subchannelQ.ap_frame.BCDValue);    // F(abs)

            SetPhase(BusPhase_DataIn);
        }
Ejemplo n.º 8
0
        public static void TestQueueResizing()
        {
            Random random = new Random(5);
            UnsafeBufferPool<int> pool = new UnsafeBufferPool<int>();
            QuickQueue<int> queue = new QuickQueue<int>(pool, 2);
            Queue<int> controlQueue = new Queue<int>();

            for (int iterationIndex = 0; iterationIndex < 1000000; ++iterationIndex)
            {
                if (random.NextDouble() < 0.7)
                {
                    queue.Enqueue(iterationIndex);
                    controlQueue.Enqueue(iterationIndex);
                }
                if (random.NextDouble() < 0.2)
                {
                    queue.Dequeue();
                    controlQueue.Dequeue();
                }
                if (iterationIndex % 1000 == 0)
                {
                    queue.EnsureCapacity(queue.Count * 3);
                }
                else if (iterationIndex % 7777 == 0)
                {
                    queue.Compact();
                }
            }

            Assert.IsTrue(queue.Count == controlQueue.Count);
            while (queue.Count > 0)
            {
                var a = queue.Dequeue();
                var b = controlQueue.Dequeue();
                Assert.IsTrue(a == b);
                Assert.IsTrue(queue.Count == controlQueue.Count);
            }
        }
Ejemplo n.º 9
0
        public unsafe void GetSelfOverlapsViaStreamingQueries <TResultList>(ref TResultList results) where TResultList : IList <Overlap>
        {
            //var startTime = Stopwatch.GetTimestamp();
            var rootTarget = new StreamingTarget {
                LeafGroups = new QuickList <StreamingLeafGroup>(BufferPools <StreamingLeafGroup> .Locking, BufferPool <StreamingLeafGroup> .GetPoolIndex(LeafCount))
            };

            rootTarget.LeafGroups.Add(new StreamingLeafGroup());
            for (int i = 0; i < LeafCount; ++i)
            {
                BoundingBoxWide leafWide;
                BoundingBoxWide.GetBoundingBox(ref Levels[leaves[i].LevelIndex].Nodes[leaves[i].NodeIndex].BoundingBoxes, leaves[i].ChildIndex, out leafWide);
                var leafIndexWide = new Vector <int>(i);
                rootTarget.Add(ref leafIndexWide, ref leafWide, singleMasks);
            }
            //var endTime = Stopwatch.GetTimestamp();
            //Console.WriteLine($"Initial target construction time: {(endTime - startTime) / (double)Stopwatch.Frequency}");

            QuickQueue <StreamingTarget> targets = new QuickQueue <StreamingTarget>(BufferPools <StreamingTarget> .Locking, BufferPool <StreamingLeafGroup> .GetPoolIndex(LeafCount));

            targets.Enqueue(ref rootTarget);

            QuickList <int> fallbackResults = new QuickList <int>(BufferPools <int> .Locking);

            StreamingTarget target;

            while (targets.TryDequeueLast(out target))
            {
                const int GroupFallbackThreshold = 2; //unfortunately, this should be as high as possible right now because the regular query is faster, period.
                if (target.LeafGroups.Count <= GroupFallbackThreshold)
                {
                    var max = target.LastLeavesCount == Vector <int> .Count ? target.LeafGroups.Count : target.LeafGroups.Count - 1;
                    for (int leafGroupIndex = 0; leafGroupIndex < max; ++leafGroupIndex)
                    {
                        for (int leafInGroupIndex = 0; leafInGroupIndex < Vector <int> .Count; ++leafInGroupIndex)
                        {
                            BoundingBoxWide leafWide;
                            BoundingBoxWide.GetBoundingBox(ref target.LeafGroups.Elements[leafGroupIndex].BoundingBoxes, leafInGroupIndex, out leafWide);
                            TestRecursive(target.LevelIndex, target.NodeIndex, ref leafWide, ref fallbackResults);
                            for (int resultIndex = 0; resultIndex < fallbackResults.Count; ++resultIndex)
                            {
                                var queryLeafIndex = target.LeafGroups.Elements[leafGroupIndex].Leaves[leafInGroupIndex];
                                if (queryLeafIndex < fallbackResults.Elements[resultIndex])
                                {
                                    results.Add(new Overlap {
                                        A = queryLeafIndex, B = fallbackResults.Elements[resultIndex]
                                    });
                                }
                            }
                            fallbackResults.Count = 0;
                        }
                    }
                    if (target.LastLeavesCount < Vector <int> .Count)
                    {
                        var leafGroupIndex = target.LeafGroups.Count - 1;
                        for (int leafInGroupIndex = 0; leafInGroupIndex < target.LastLeavesCount; ++leafInGroupIndex)
                        {
                            BoundingBoxWide leafWide;
                            BoundingBoxWide.GetBoundingBox(ref target.LeafGroups.Elements[leafGroupIndex].BoundingBoxes, leafInGroupIndex, out leafWide);
                            TestRecursive(target.LevelIndex, target.NodeIndex, ref leafWide, ref fallbackResults);
                            for (int resultIndex = 0; resultIndex < fallbackResults.Count; ++resultIndex)
                            {
                                var queryLeafIndex = target.LeafGroups.Elements[leafGroupIndex].Leaves[leafInGroupIndex];
                                if (queryLeafIndex < fallbackResults.Elements[resultIndex])
                                {
                                    results.Add(new Overlap {
                                        A = queryLeafIndex, B = fallbackResults.Elements[resultIndex]
                                    });
                                }
                            }
                            fallbackResults.Count = 0;
                        }
                    }
                }
                else
                {
                    var node = Levels[target.LevelIndex].Nodes[target.NodeIndex];



                    //Test each node child against all of the leaves for this node.
                    for (int nodeChildIndex = 0; nodeChildIndex < Vector <int> .Count; ++nodeChildIndex)
                    {
                        if (node.Children[nodeChildIndex] == -1)
                        {
                            continue;
                        }

                        BoundingBoxWide nodeChildWide;
                        BoundingBoxWide.GetBoundingBox(ref node.BoundingBoxes, nodeChildIndex, out nodeChildWide);

                        if (node.Children[nodeChildIndex] >= 0)
                        {
                            //Internal node. Can spawn more targets.
                            StreamingTarget newTarget = new StreamingTarget
                            {
                                LevelIndex = target.LevelIndex + 1,
                                NodeIndex  = node.Children[nodeChildIndex],
                                LeafGroups = new QuickList <StreamingLeafGroup>(BufferPools <StreamingLeafGroup> .Locking, BufferPool <StreamingLeafGroup> .GetPoolIndex(target.LeafGroups.Count))
                            };
                            newTarget.LeafGroups.Add(new StreamingLeafGroup());


                            for (int leafGroupIndex = 0; leafGroupIndex < target.LeafGroups.Count; ++leafGroupIndex)
                            {
                                Vector <int> intersectionMask;
                                BoundingBoxWide.Intersects(ref nodeChildWide, ref target.LeafGroups.Elements[leafGroupIndex].BoundingBoxes, out intersectionMask);

                                int leafCountInGroup = leafGroupIndex == target.LeafGroups.Count - 1 ? target.LastLeavesCount : Vector <int> .Count;

                                for (int leafIndexInGroup = 0; leafIndexInGroup < leafCountInGroup; ++leafIndexInGroup)
                                {
                                    if (intersectionMask[leafIndexInGroup] < 0)
                                    {
                                        newTarget.Add(ref target, leafGroupIndex, leafIndexInGroup, singleMasks);
                                    }
                                }
                            }
                            targets.Enqueue(ref newTarget);
                        }
                        else
                        {
                            //Leaf node.

                            var nodeLeafIndex = Encode(node.Children[nodeChildIndex]);

                            for (int leafGroupIndex = 0; leafGroupIndex < target.LeafGroups.Count; ++leafGroupIndex)
                            {
                                Vector <int> intersectionMask;
                                BoundingBoxWide.Intersects(ref nodeChildWide, ref target.LeafGroups.Elements[leafGroupIndex].BoundingBoxes, out intersectionMask);

                                int leafCountInGroup = leafGroupIndex == target.LeafGroups.Count - 1 ? target.LastLeavesCount : Vector <int> .Count;

                                for (int leafIndexInGroup = 0; leafIndexInGroup < leafCountInGroup; ++leafIndexInGroup)
                                {
                                    if (intersectionMask[leafIndexInGroup] < 0)
                                    {
                                        var leafIndex = target.LeafGroups[leafGroupIndex].Leaves[leafIndexInGroup];
                                        if (leafIndex < nodeLeafIndex) //The other leaf will also find a collision!
                                        {
                                            results.Add(new Overlap {
                                                A = leafIndex, B = nodeLeafIndex
                                            });
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
                target.LeafGroups.Count = 0; //Don't bother forcing a clear on these. TODO: buffer safety check disable
                target.LeafGroups.Dispose();
            }
            targets.Dispose();
            fallbackResults.Dispose();

            //Console.WriteLine("Streaming Query based results:");
            //for (int i = 0; i < results.Count; ++i)
            //{
            //    Console.WriteLine($"{results[i].A}, {results[i].B}");
            //}
        }