/// <summary> /// Calculate the efficient frontier for a given covariance matrix and mean vector /// </summary> /// <param name="covariance">Covariance Matrix of assets included in portfolio</param> /// <param name="mean">Expected return of assets in portfolio</param> public IPortfolio Calculate() { // MVO using quadratic programming // Optimal portfolio is: // min(-dvec'bvec+1/2x'Dmat*x) - where ' is the transpose of vector/matrix // Dmat - Covariance Matrix - quadratic terms // dvec - [0..nAssets] - linear terms // Amat - variable weigths in constraints equation // bvec - constraint equalities // with constraints // A'x >= b // meq = eqsumW // Get mean returns of all instruments in portfolio var meanReturns = from sp in _samplePortfolio select sp.Mean; // Get covariance matrix for all instruments in portfolio var cov = from sp in _samplePortfolio select new KeyValuePair <string, Dictionary <string, double> >(sp.ID, sp.Covariance); var covariance = CovarianceMatrix.Create(cov.ToDictionary(a => a.Key, b => b.Value)); var portfConf = new ConfigurationManager(_samplePortfolio); OptimizationResult result; double[] dvec = new double[_samplePortfolio.Count].Zeros(_samplePortfolio.Count); try { result = QuadProg.Solve(covariance, dvec, portfConf.Amat, portfConf.Bvec, portfConf.NumEquals); } catch (Exception e) { // Solution not found - create NaN Portfolio result = new OptimizationResult(new double[] { double.NaN }, double.NaN); // Log error Console.WriteLine(e.Message); } int q = 0; double sum = 0; foreach (var m in meanReturns) { sum = sum + m * result.Solution[q]; q++; } var portf = PortfolioFactory.Create(_samplePortfolio, _samplePortfolio.Name, sum, result.Value); for (int c = 0; c < result.Solution.Length; c++) { portf[_samplePortfolio[c].ID].Weight = result.Solution[c]; } return(portf); }
/// <summary> /// Calculate the efficient frontier for a given covariance matrix and mean vector /// </summary> /// <param name="covariance">Covariance Matrix of assets included in portfolio</param> /// <param name="mean">Expected return of assets in portfolio</param> public IEnumerable <IPortfolio> Calculate(int digits = 4) { // MVO using quadratic programming // Optimal portfolio is: // min(-dvec'bvec+1/2x'Dmat*x) - where ' is the transpose of vector/matrix // Dmat - Covariance Matrix - quadratic terms // dvec - [0..nAssets] - linear terms // Amat - variable weigths in constraints equation // bvec - constraint equalities // with constraints // A'x >= b // meq = eqsumW var meanReturns = from sp in _samplePortfolio select sp.Mean; var cov = from ins in _samplePortfolio select new KeyValuePair <string, Dictionary <string, double> >(ins.ID, ins.Covariance); var covariance = CovarianceMatrix.Create(cov.ToDictionary(a => a.Key, b => b.Value)); List <IPortfolio> portfolios = new List <IPortfolio>(); // generate sequence of target returns for the efficient frontier and minimum variance locus var targetReturns = new double[_numPortfolios].Seq(meanReturns.Min(), meanReturns.Max(), (int)_numPortfolios, digits); double[] dvec = new double[_samplePortfolio.Count].Zeros(_samplePortfolio.Count); // For every target return find the minimum variance portfolio for (int i = 0; i < _numPortfolios; i++) { var portfConf = new ConfigurationManager(_samplePortfolio, targetReturns[i]); OptimizationResult result; try { result = QuadProg.Solve(covariance, dvec, portfConf.Amat, portfConf.Bvec, portfConf.NumEquals); } catch (Exception e) { // Solution not found - create NaN Portfolio result = new OptimizationResult(new double[] { double.NaN }, double.NaN); // Log error Console.WriteLine(e.Message); } var portf = PortfolioFactory.Create(_samplePortfolio, i.ToString(), targetReturns[i], result.Value); for (int c = 0; c < result.Solution.Length; c++) { portf[_samplePortfolio[c].ID].Weight = result.Solution[c]; } portfolios.Add(portf); } return(portfolios); }