Ejemplo n.º 1
0
        public void start(Analysis parent, HttpResponse response, System.Web.SessionState.HttpSessionState session)
        {
            ParameterStream stream = ParameterStream.getStream(session);

            String[] features = (String[])stream.get("selectedFeatures");
            int      PCs      = (int)stream.get("numberOfPCs");

            Registry.Registry   registry = Registry.Registry.getRegistry(session);
            System.Data.DataSet ds       = (System.Data.DataSet)registry.GetDataset((string)stream.get("dataSetName"));

            //retrieve dataset table (assume one for now)
            System.Data.DataTable dt = ds.Tables[0];


            //raw data
            double[,] rawData = new double[dt.Rows.Count, features.Count()];
            for (int i = 0; i < dt.Rows.Count; i++)
            {
                for (int j = 0; j < features.Count(); j++)
                {
                    rawData[i, j] = (double)dt.Rows[i].ItemArray.ElementAt(dt.Columns[features[j]].Ordinal);
                }
            }

            //Create matrix to hold data for PCA
            Matrix X = new Matrix(rawData);

            //Remove mean
            Vector columnVector;

            for (int i = 0; i < X.ColumnCount; i++)
            {
                columnVector = X.GetColumnVector(i);
                X.SetColumnVector(columnVector.Subtract(columnVector.Average()), i);
            }

            Matrix PCmatrix = new Matrix(X.ColumnCount, PCs, 0);
            Vector Weights  = new Vector(PCs);

            System.Diagnostics.Stopwatch watch = new Stopwatch();

            //Run algorithm and time it
            watch.Start();
            SingularValueDecomposition svd = SVD(X);

            watch.Stop();
            stream.set("algRunTime", watch.ElapsedMilliseconds);

            /*
             * response.Buffer = true;
             * response.Write(PCmatrix.ToString() + "\n");
             * response.Write(Weights.ToString() + "\n");
             * response.Flush();
             */
            Debug.WriteLine("Done with PCA");
            stream.set("PCmatrix", svd.RightSingularVectors);
            stream.set("Weights", svd.SingularValues);
            parent.next(response, session);
        }
Ejemplo n.º 2
0
 protected void Page_Load(object sender, EventArgs e)
 {
     if (stream.contains("algRunTime"))
     {
         AlgorithmTime.Text = "PCA Algorithm took: " + stream.get("algRunTime").ToString() + " ms";
     }
     else
     {
         AlgorithmTime.Text = "";
     }
 }
Ejemplo n.º 3
0
        protected void FeatureList_Init(object sender, EventArgs e)
        {
            String          dataSetParameterName = "dataSetName";
            ParameterStream stream = ParameterStream.getStream(Session);

            if (stream.contains(dataSetParameterName))
            {
                Registry.Registry appRegistry = Registry.Registry.getRegistry(Session);
                DataSet           ds          = appRegistry.GetDataset((String)stream.get(dataSetParameterName));

                foreach (DataColumn dc in ds.Tables[0].Columns)
                {
                    FeatureList.Items.Add(dc.ColumnName);
                }
            }
        }
Ejemplo n.º 4
0
        protected void Page_Load(object sender, EventArgs e)
        {
            Matrix PCmatrix = (Matrix)stream.get("PCmatrix");

            String[] features = (String[])stream.get("selectedFeatures");

            System.Data.DataSet ds = (System.Data.DataSet)registry.GetDataset((string)stream.get("dataSetName"));

            //retrieve dataset table (assume one for now)
            System.Data.DataTable dt = ds.Tables[0];

            //raw data
            double[,] rawData = new double[dt.Rows.Count, features.Count()];
            for (int i = 0; i < dt.Rows.Count; i++)
            {
                for (int j = 0; j < features.Count(); j++)
                {
                    rawData[i, j] = (double)dt.Rows[i].ItemArray.ElementAt(dt.Columns[features[j]].Ordinal);
                }
            }

            //Create matrix to hold data for PCA
            Matrix X = new Matrix(rawData);

            //Remove mean
            Vector columnVector;

            for (int i = 0; i < X.ColumnCount; i++)
            {
                columnVector = X.GetColumnVector(i);
                X.SetColumnVector(columnVector.Subtract(columnVector.Average()), i);
            }

            //get first two PCs
            Matrix xy = new Matrix(PCmatrix.RowCount, 2);

            xy.SetColumnVector(PCmatrix.GetColumnVector(0), 0);
            xy.SetColumnVector(PCmatrix.GetColumnVector(1), 1);


            //project
            Matrix projected = X.Multiply(xy);

            DataPoint point;

            Projection.Series.Clear();
            Projection.Legends.Clear();


            //if a label column is selected
            String LabelColumnName = LabelColumn.Text;

            if (!LabelColumnName.Equals(""))
            {
                //get labels
                int           labelColumnIndex = dt.Columns[LabelColumnName].Ordinal;
                List <String> labels           = new List <String>();
                String        item;

                for (int i = 0; i < dt.Rows.Count; i++)
                {
                    item = (String)dt.Rows[i].ItemArray.ElementAt(labelColumnIndex);
                    if (!labels.Contains(item))
                    {
                        labels.Add(item);
                    }
                }
                Projection.Legends.Add(LabelColumnName);
                System.Drawing.Font font = Projection.Legends[LabelColumnName].Font = new System.Drawing.Font(Projection.Legends[LabelColumnName].Font.Name, 14);

                //Configure series
                foreach (String label in labels)
                {
                    Projection.Series.Add(label);
                    Projection.Series[label].LegendText      = label;
                    Projection.Series[label].IsXValueIndexed = false;
                    Projection.Series[label].ChartType       = SeriesChartType.Point;
                    Projection.Series[label].MarkerSize      = 8;
                }

                //Add points
                for (int i = 0; i < projected.RowCount; i++)
                {
                    point = new DataPoint(projected[i, 0], projected[i, 1]);
                    String label = dt.Rows[i].ItemArray[labelColumnIndex].ToString();
                    Projection.Series[label].Points.Add(point);
                }
            }
            else
            {
                //Single plot graph
                Projection.Series.Add("series1");
                Projection.Series[0].IsXValueIndexed = false;
                Projection.Series[0].ChartType       = SeriesChartType.Point;
                Projection.Series[0].MarkerSize      = 8;

                for (int i = 0; i < projected.RowCount; i++)
                {
                    point = new DataPoint(projected[i, 0], projected[i, 1]);
                    Projection.Series[0].Points.Add(point);
                }
            }
        }