Ejemplo n.º 1
0
        public override void DoEpoch(float t, float round_t)
        {
            float[,] test2d;
            float[] test;

            this.FindBMU();

            //Slice the pwinner row by row and do some great stuff
            m_PWinner = ParallelArrays.Evaluate(m_PWinner);

            Slice[] slices = new Slice[2];
            for (int i = 0; i < m_Parent.DataSource.PatternCount; ++i)
            {
                slices[1] = new Slice(0, m_Parent.NeuronMap.GetLength(0));
                slices[0] = new Slice(i, 1);

                FloatParallelArray s = ParallelArrays.Section(m_PWinner, slices);
                s = ParallelArrays.Evaluate(s);
                FloatParallelArray bmuw = ParallelArrays.DropDimension(ParallelArrays.InnerProduct(s, m_GPUWeight), 0);
                FloatParallelArray bmuc = ParallelArrays.InnerProduct(s, m_GPUCoord);

                //Compute distances to bmu
                DisposableFloatParallelArray bmucEvaluated = ParallelArrays.Evaluate(bmuc);     //Workaround
                bmuc = ParallelArrays.Stretch(bmucEvaluated, m_Parent.NeuronMap.GetLength(0), 1);
                FloatParallelArray diff = ParallelArrays.Subtract(m_GPUCoord, bmuc);
                FloatParallelArray dist = ParallelArrays.Multiply(diff, diff);
                dist = ParallelArrays.Sum(dist, 1);
                dist = ParallelArrays.Multiply(-1.0f, dist);

                //Apply update formula
                FloatParallelArray constE = new FloatParallelArray((float)(Math.E), m_Parent.NeuronMap.GetLength(0));
                FloatParallelArray sigma  = new FloatParallelArray((float)(Math.Pow(Neighborhood(t, round_t) * 0.85, 2)), m_Parent.NeuronMap.GetLength(0));
                FloatParallelArray lrate  = new FloatParallelArray((float)LearningRate(t, round_t), m_Parent.NeuronMap.GetLength(0), m_Parent.DataSource.PatternLength);
                FloatParallelArray omeg   = ParallelArrays.Divide(dist, sigma);

                //FloatParallelArray momeg = ParallelArrays.Pow(constE, omeg);
                FloatParallelArray           momeg = ParallelArrays.Pow2(ParallelArrays.Log2(constE) * omeg);
                DisposableFloatParallelArray domeg = ParallelArrays.Evaluate(momeg);         //Workaround
                omeg = ParallelArrays.AddDimension(domeg, 1);
                omeg = ParallelArrays.Stretch(omeg, 1, m_Parent.DataSource.PatternLength);
                FloatParallelArray sbmuw = ParallelArrays.AddDimension(bmuw, 0);
                sbmuw = ParallelArrays.Stretch(sbmuw, m_Parent.NeuronMap.GetLength(0), 1);

                m_GPUWeight = ((m_GPUWeight + ((sbmuw - m_GPUWeight) * omeg * lrate)));
            }
            m_GPUWeight = ParallelArrays.Evaluate(m_GPUWeight);
        }
Ejemplo n.º 2
0
        public FloatParallelArray Pop()
        {
            if (IsEmpty)
            {
                throw new UnexpectedOperation();
            }

            if (m_ContArray.Shape[0] - 1 == 0)
            {
                IsEmpty = true;
                return(m_ContArray);
            }

            Slice slc = new Slice(0, m_ContArray.Shape[0] - 1);
            FloatParallelArray popelem = ParallelArrays.Section(m_ContArray, slc);

            m_ContArray = ParallelArrays.Replicate(m_ContArray, m_ContArray.Shape[0] - 1);
            return(popelem);
        }