Ejemplo n.º 1
0
        void BatchGD(T[] inputData, T[] knownOutputs)
        {
            List <double> wts = new List <double>(new double[Weights.Count]);

            Parallel.For(0, inputData.Length, (i) =>
            {
                Parallel.For(0, Weights.Count, (j) =>
                {
                    double delWT = ((dynamic)knownOutputs[i] - Predict(inputData[i])) * System.Math.Pow((double)(dynamic)inputData[i], j);
                    wts[j]      += delWT * LearningRate;
                });

                if (OnTraining != null)
                {
                    TrainingResponse res = new TrainingResponse();
                    res.Loss             = 0.5f * System.Math.Pow((dynamic)knownOutputs[i] - Predict(inputData[i]), 2);
                    OnTraining?.Invoke(this, res);
                }
            });

            Parallel.For(0, Weights.Count, (j) =>
            {
                Weights[j] += wts[j] * LearningRate;
            });

            //Slope = Slope + delta_m * LearningRate;
            //Bias = Bias + delta_c * LearningRate;
        }
Ejemplo n.º 2
0
 void SGD(T[] inputData, T[] knownOutputs)
 {
     Parallel.For(0, inputData.Length, (i) =>
     {
         double delta_m = inputData[i] * ((dynamic)knownOutputs[i] - Predict(inputData[i])) * DSigmoid((inputData[i]));
         double delta_c = ((dynamic)knownOutputs[i] - Predict(inputData[i]));
         Slope         += delta_m * LearningRate;
         Bias          += delta_c * LearningRate;
         if (OnTraining != null)
         {
             TrainingResponse res = new TrainingResponse();
             res.Loss             = 0.5f * System.Math.Pow((dynamic)knownOutputs[i] - Predict(inputData[i]), 2);
             OnTraining?.Invoke(this, res);
         }
     });
 }
Ejemplo n.º 3
0
        void SGD(T[] inputData, T[] knownOutputs)
        {
            Parallel.For(0, inputData.Length, (i) =>
            {
                Parallel.For(0, Weights.Count, (j) =>
                {
                    double delWT = ((dynamic)knownOutputs[i] - Predict(inputData[i])) * System.Math.Pow((double)(dynamic)inputData[i], j);
                    Weights[j]  += delWT * LearningRate;
                });

                if (OnTraining != null)
                {
                    TrainingResponse res = new TrainingResponse();
                    res.Loss             = 0.5f * System.Math.Pow((dynamic)knownOutputs[i] - Predict(inputData[i]), 2);
                    OnTraining?.Invoke(this, res);
                }
            });
        }