Ejemplo n.º 1
0
    public static void Main(string[] args)
    {
        // load the data
        var user_mapping   = new EntityMapping();
        var item_mapping   = new EntityMapping();
        var training_data  = ItemRecommendation.Read(args[0], user_mapping, item_mapping);
        var relevant_users = training_data.AllUsers;         // users that will be taken into account in the evaluation
        var relevant_items = training_data.AllItems;         // items that will be taken into account in the evaluation
        var test_data      = ItemRecommendation.Read(args[1], user_mapping, item_mapping);

        // set up the recommender
        var recommender = new MostPopular();

        recommender.Feedback = training_data;
        recommender.Train();

        // measure the accuracy on the test data set
        var results = ItemPredictionEval.Evaluate(recommender, test_data, training_data, relevant_users, relevant_items);

        foreach (var key in results.Keys)
        {
            Console.WriteLine("{0}={1}", key, results[key]);
        }

        // make a prediction for a certain user and item
        Console.WriteLine(recommender.Predict(user_mapping.ToInternalID(1), item_mapping.ToInternalID(1)));
    }
    public static void Main(string[] args)
    {
        // load the data
        var training_data = ItemData.Read(args[0]);
        var test_data     = ItemData.Read(args[1]);

        // set up the recommender
        var recommender = new MostPopular();

        recommender.Feedback = training_data;
        recommender.Train();

        // measure the accuracy on the test data set
        var results = recommender.Evaluate(test_data, training_data);

        foreach (var key in results.Keys)
        {
            Console.WriteLine("{0}={1}", key, results[key]);
        }
        Console.WriteLine(results);

        // make a score prediction for a certain user and item
        Console.WriteLine(recommender.Predict(1, 1));
    }