Ejemplo n.º 1
0
        /// <summary>
        /// Fast version of predict filter
        /// </summary>
        /// <param name="scene"></param>
        /// <param name="u">Control vector of accelerations</param>
        /// <param name="delta_t">time step in seconds</param>
        public void predict_filter_fast(Scene_Single scene, Vector u, float delta_t)
        {
            Vector xv = scene.get_xv();

            // Make model calculations: results are stored in RES matrices
            scene.get_motion_model().func_fv_and_dfv_by_dxv(xv, u, delta_t);
            scene.get_motion_model().func_Q(xv, u, delta_t);

            Vector fvRES = scene.get_motion_model().get_fvRES();

            xv.Update(fvRES);

            Motion_Model mm                       = scene.get_motion_model();
            MatrixFixed  Pxx                      = scene.get_Pxx();
            MatrixFixed  dfv_by_dxvRES            = mm.get_dfv_by_dxvRES();
            MatrixFixed  dfv_by_dxvRES_transposed = dfv_by_dxvRES.Transpose();
            MatrixFixed  QxRES                    = mm.get_QxRES();

            Pxx.Update((dfv_by_dxvRES * Pxx * dfv_by_dxvRES_transposed) + QxRES);

            // Change the covariances between vehicle state and feature states
            foreach (Feature it in scene.feature_list)
            {
                MatrixFixed Pxy = it.get_Pxy();
                Pxy.Update(dfv_by_dxvRES * Pxy);
            }
        }
Ejemplo n.º 2
0
        /// <summary>
        /// Simple overall prediction
        /// </summary>
        /// <param name="scene"></param>
        /// <param name="u"></param>
        /// <param name="delta_t"></param>
        public void predict_filter_slow(Scene_Single scene, Vector u, float delta_t)
        {
            Debug.WriteLine("*** SLOW PREDICTION ***");

            // What we need to do for the prediction:

            //    Calculate f and grad_f_x
            //    Calculate Q
            //    Form x(k+1|k) and P(k+1|k)

            int size = (int)scene.get_total_state_size();

            // First form original total state and covariance
            Vector      x = new Vector(size);
            MatrixFixed P = new MatrixFixed(size, size);

            scene.construct_total_state_and_covariance(ref x, ref P);

            // Make model calculations: store results in RES matrices
            Vector xv = scene.get_xv();

            //Vector xv = new Vector(scene.get_xv());
            scene.get_motion_model().func_fv_and_dfv_by_dxv(xv, u, delta_t);
            scene.get_motion_model().func_Q(scene.get_xv(), u, delta_t);

            // Find new state f
            Vector f = new Vector(size);

            // Feature elements of f are the same as x
            f.Update(x);
            f.Update(scene.get_motion_model().get_fvRES(), 0);

            // Find new P

            // Since most elements of df_by_dx are zero...
            MatrixFixed df_by_dx = new MatrixFixed(size, size);

            df_by_dx.Fill(0.0f);

            // Fill the rest of the elements of df_by_dx: 1 on diagonal for features
            for (int i = (int)scene.get_motion_model().STATE_SIZE; i < df_by_dx.Rows; i++)
            {
                df_by_dx[i, i] = 1.0f;
            }

            df_by_dx.Update(scene.get_motion_model().get_dfv_by_dxvRES(), 0, 0);

            // Calculate the process noise
            MatrixFixed Q = new MatrixFixed(size, size);

            Q.Fill(0.0f);
            Q.Update(scene.get_motion_model().get_QxRES(), 0, 0);

            P.Update(df_by_dx * P * df_by_dx.Transpose());

            P += Q;

            scene.fill_state_and_covariance(f, P);
        }
Ejemplo n.º 3
0
        public override void func_zeroedyigraphics_and_Pzeroedyigraphics(Vector yi, Vector xv,
                                                                         MatrixFixed Pxx, MatrixFixed Pxyi, MatrixFixed Pyiyi)
        {
            ((Wide_Camera_Point_Feature_Measurement_Model)wide_model).threed_motion_model.func_xp(xv);

            // In this case (where the feature state is the same as the graphics
            // state) zeroedyigraphics is the same as zeroedyi
            func_zeroedyi_and_dzeroedyi_by_dxp_and_dzeroedyi_by_dyi(yi, ((Wide_Camera_Point_Feature_Measurement_Model)wide_model).threed_motion_model.get_xpRES());
            zeroedyigraphicsRES.Update(zeroedyiRES);

            MatrixFixed dzeroedyigraphics_by_dxv = dzeroedyi_by_dxpRES * ((Wide_Camera_Point_Feature_Measurement_Model)wide_model).threed_motion_model.get_dxp_by_dxvRES();

            PzeroedyigraphicsRES.Update(dzeroedyigraphics_by_dxv * Pxx * dzeroedyigraphics_by_dxv.Transpose() +
                                        dzeroedyi_by_dyiRES * Pxyi.Transpose() * dzeroedyigraphics_by_dxv.Transpose() +
                                        dzeroedyigraphics_by_dxv * Pxyi * dzeroedyi_by_dyiRES.Transpose() +
                                        dzeroedyi_by_dyiRES * Pyiyi * dzeroedyi_by_dyiRES.Transpose());
        }
Ejemplo n.º 4
0
        public void update_filter_internal_measurement_slow(Scene_Single scene, uint i)
        {
            // Size of measurement vector
            uint size = ((Internal_Measurement)(scene.internal_measurement_vector[(int)i])).get_internal_measurement_model().MEASUREMENT_SIZE;

            uint size2 = scene.get_total_state_size();   // Size of state vector

            Vector      x = new Vector(size2);
            MatrixFixed P = new MatrixFixed(size2, size2);

            scene.construct_total_state_and_covariance(ref x, ref P);

            // cout << "x:" << x;
            // cout << "P:" << P;

            // 1. Form nu and dh_by_dx
            Vector      nu_tot       = new Vector(size);
            MatrixFixed dh_by_dx_tot = new MatrixFixed(size, size2);
            MatrixFixed R_tot        = new MatrixFixed(size, size);

            scene.construct_total_internal_measurement_stuff(nu_tot, dh_by_dx_tot, R_tot, i);

            // 2. Calculate S(k+1)
            MatrixFixed S = new MatrixFixed(size, size);

            //MatrixFixed Tempss2 = new MatrixFixed(size, size2);
            //MatrixFixed Temps2s = new MatrixFixed(size2, size);

            MatrixFixed dh_by_dx_totT = dh_by_dx_tot.Transpose();

            S.Update(dh_by_dx_tot * P * dh_by_dx_totT);
            S += R_tot;

            // cout << "R_tot:" << R_tot;
            //  cout << "S:" << S;
            // cout << "dh_by_dx_tot:" << dh_by_dx_tot;
            // cout << "dh_by_dx_totT:" << dh_by_dx_totT;

            // 3. Calculate W(k+1)
            Cholesky    S_cholesky = new Cholesky(S);
            MatrixFixed W          = P * dh_by_dx_totT * S_cholesky.Inverse();

            // cout << "W:" << W;

            // 4. Calculate x(k+1|k+1)
            x += W * nu_tot;

            // 5. Calculate P(k+1|k+1)
            P -= W * S * W.Transpose();

            scene.fill_state_and_covariance(x, P);

            // cout << "x after update:" << x;
            // cout << "P after update:" << P;
        }
Ejemplo n.º 5
0
        /// <summary>
        /// Update the filter in a simple overall way
        /// </summary>
        /// <param name="scene"></param>
        public void total_update_filter_slow(Scene_Single scene)
        {
            // Steps to update the total filter:
            // 1. Form h and dh_by_dx and R(k+1) and z
            // 2. Calculate S(k+1)
            // 3. Calculate W(k+1)
            // 4. Calculate x(k+1|k+1)
            // 5. Calculate P(k+1|k+1)

            uint size = scene.get_successful_measurement_vector_size(); // Size of measurement vector

            uint size2 = scene.get_total_state_size();                  // Size of state vector

            Vector      x = new Vector(size2);
            MatrixFixed P = new MatrixFixed(size2, size2);

            scene.construct_total_state_and_covariance(ref x, ref P);

            // 1. Form nu and dh_by_dx
            Vector      nu_tot       = new Vector(size);
            MatrixFixed dh_by_dx_tot = new MatrixFixed(size, size2);
            MatrixFixed R_tot        = new MatrixFixed(size, size);

            scene.construct_total_measurement_stuff(nu_tot, dh_by_dx_tot, R_tot);

            // 2. Calculate S(k+1)
            MatrixFixed temp_matrix = P * dh_by_dx_tot.Transpose();  //pre-calculate to speed up subsequent stuff
            MatrixFixed S           = dh_by_dx_tot * temp_matrix;

            S += R_tot;

            // 3. Calculate W(k+1)
            Cholesky S_cholesky = new Cholesky(S);

            MatrixFixed W = temp_matrix * S_cholesky.Inverse();

            // 4. Calculate x(k+1|k+1)
            x += W * nu_tot;

            // 5. Calculate P(k+1|k+1)
            P -= W * S * W.Transpose();

            scene.fill_state_and_covariance(x, P);
        }
Ejemplo n.º 6
0
        /// <summary>
        /// Constructor for partially-initialised features.
        /// </summary>
        /// <param name="id">reference to the feature</param>
        /// <param name="lab"></param>
        /// <param name="list_pos"></param>
        /// <param name="scene"></param>
        /// <param name="h"></param>
        /// <param name="p_i_f_m_m"></param>
        public Feature(byte[] id, uint lab, uint list_pos,
                       Scene_Single scene, Vector h,
                       Partially_Initialised_Feature_Measurement_Model p_i_f_m_m,
                       Vector feature_colour)
        {
            feature_measurement_model = p_i_f_m_m;
            partially_initialised_feature_measurement_model = p_i_f_m_m;
            fully_initialised_feature_measurement_model     = null;

            // Stuff below substituted from Feature_common
            //   Feature_common(id, lab, list_pos, scene, h);

            feature_constructor_bookeeping();

            identifier       = id;
            label            = lab;
            position_in_list = list_pos;        // Position of new feature in list
            position_in_total_state_vector = 0; // This should be set properly
            colour = feature_colour;
            //when feature is added

            // Save the vehicle position where this feature was acquired
            scene.get_motion_model().func_xp(scene.get_xv());
            //xp_orig = scene.get_motion_model().get_xpRES();
            xp_orig = new Vector(scene.get_motion_model().get_xpRES());

            // Call model functions to calculate feature state, measurement noise
            // and associated Jacobians. Results are stored in RES matrices

            // First calculate "position state" and Jacobian
            scene.get_motion_model().func_xp(scene.get_xv());
            scene.get_motion_model().func_dxp_by_dxv(scene.get_xv());

            // Now ask the model to initialise the state vector and calculate Jacobians
            // so that I can go and calculate the covariance matrices
            partially_initialised_feature_measurement_model.func_ypi_and_dypi_by_dxp_and_dypi_by_dhi_and_Ri(h, scene.get_motion_model().get_xpRES());

            // State y
            //y = partially_initialised_feature_measurement_model.get_ypiRES();
            y = new Vector(partially_initialised_feature_measurement_model.get_ypiRES());

            // Temp_FS1 will store dypi_by_dxv
            MatrixFixed Temp_FS1 =
                partially_initialised_feature_measurement_model.get_dypi_by_dxpRES() *
                scene.get_motion_model().get_dxp_by_dxvRES();

            // Pxy
            Pxy = scene.get_Pxx() * Temp_FS1.Transpose();

            // Pyy
            Pyy = Temp_FS1 * scene.get_Pxx() * Temp_FS1.Transpose()
                  + partially_initialised_feature_measurement_model.get_dypi_by_dhiRES()
                  * partially_initialised_feature_measurement_model.get_RiRES()
                  * partially_initialised_feature_measurement_model.get_dypi_by_dhiRES().Transpose();

            // Covariances of this feature with others
            int j = 0;

            foreach (Feature it in scene.get_feature_list_noconst())
            {
                if (j < position_in_list)
                {
                    // new Pypiyj = dypi_by_dxv . Pxyj
                    // Size of this is FEATURE_STATE_SIZE(new) by FEATURE_STATE_SIZE(old)
                    MatrixFixed m = it.get_Pxy();
                    MatrixFixed newPyjypi_to_store = (Temp_FS1 * m).Transpose();

                    //add to the list
                    matrix_block_list.Add(newPyjypi_to_store);
                }
                j++;
            }

            known_feature_label = -1;
        }
Ejemplo n.º 7
0
        /// <summary>
        /// Fill noise covariance matrix Pnn: this is the covariance of
        /// the noise vector (V)
        ///                  (Omega)
        /// that gets added to the state.
        /// Form of this could change later, but for now assume that
        /// V and Omega are independent, and that each of their components is
        /// independent...
        /// </summary>
        /// <param name="xv"></param>
        /// <param name="v"></param>
        /// <param name="delta_t"></param>
        public override void func_Q(Vector xv, Vector v, float delta_t)
        {
            float linear_velocity_noise_variance =
                SD_A_component_filter * SD_A_component_filter * delta_t * delta_t;
            float angular_velocity_noise_variance =
                SD_alpha_component_filter * SD_alpha_component_filter * delta_t * delta_t;

            // Independence means that the matrix is diagonal
            MatrixFixed Pnn = new MatrixFixed(6, 6);

            Pnn.Fill(0.0f);
            Pnn.Put(0, 0, linear_velocity_noise_variance);
            Pnn.Put(1, 1, linear_velocity_noise_variance);
            Pnn.Put(2, 2, linear_velocity_noise_variance);
            Pnn.Put(3, 3, angular_velocity_noise_variance);
            Pnn.Put(4, 4, angular_velocity_noise_variance);
            Pnn.Put(5, 5, angular_velocity_noise_variance);

            // Form Jacobian dxnew_by_dn
            // Is like this:
            // I * delta_t     0
            // 0               dqnew_by_dOmega
            // I               0
            // 0               I

            // Start by zeroing
            MatrixFixed dxnew_by_dn = new MatrixFixed(13, 6);

            dxnew_by_dn.Fill(0.0f);

            // Fill in easy bits first
            MatrixFixed Temp33A = new MatrixFixed(3, 3);

            Temp33A.SetIdentity();

            dxnew_by_dn.Update(Temp33A, 7, 0);
            dxnew_by_dn.Update(Temp33A, 10, 3);
            Temp33A *= delta_t;
            dxnew_by_dn.Update(Temp33A, 0, 0);

            // Tricky bit is dqnew_by_dOmega
            // Is actually the same calculation as in func_fv...
            // Since omega and Omega are additive...?
            Vector3D   rold     = new Vector3D(0, 0, 0);
            Vector3D   vold     = new Vector3D(0, 0, 0);
            Vector3D   omegaold = new Vector3D(0, 0, 0);
            Quaternion qold     = new Quaternion();

            extract_r_q_v_omega(xv, rold, qold, vold, omegaold); // overkill but easy
            // Fill in dqnew_by_domega = d(q x qwt)_by_dqwt . dqwt_by_domega
            // Temp44A is d(q x qwt) by dqwt
            MatrixFixed Temp44A = MatrixFixed.dq3_by_dq1(qold);
            // Use function below for dqwt_by_domega
            MatrixFixed Temp43A = new MatrixFixed(4, 3);

            dqomegadt_by_domega(omegaold, delta_t, Temp43A);
            // Multiply them together
            MatrixFixed Temp43B = Temp44A * Temp43A;

            // And then plug into Jacobian
            dxnew_by_dn.Update(Temp43B, 3, 3);

            // Finally do Q = dxnew_by_dn . Pnn . dxnew_by_dnT
            QxRES.Update(dxnew_by_dn * Pnn * dxnew_by_dn.Transpose());

            //  cout << "QxRES" << QxRES;
        }
Ejemplo n.º 8
0
        /// <summary>
        /// Form the covariance matrix  Q  of the process noise associated with  x_v .
        /// </summary>
        /// <param name="xv"></param>
        /// <param name="v"></param>
        /// <param name="delta_t"></param>
        public override void func_Q(Vector xv, Vector v, float delta_t)
        {
            // Fill noise covariance matrix Pnn: this is the covariance of
            // the noise vector (V)
            //                  (Omega)
            // that gets added to the state.
            // Form of this could change later, but for now assume that
            // V and Omega are independent, and that each of their components is
            // independent...
            float linear_velocity_noise_variance =
                SD_A_component_filter * SD_A_component_filter * delta_t * delta_t;
            float angular_velocity_noise_variance =
                SD_alpha_component_filter * SD_alpha_component_filter * delta_t * delta_t;

            // Independence means that the matrix is diagonal
            MatrixFixed Pnn = new MatrixFixed(6, 6);

            Pnn.Fill(0.0f);
            Pnn.Put(0, 0, linear_velocity_noise_variance);
            Pnn.Put(1, 1, linear_velocity_noise_variance);
            Pnn.Put(2, 2, linear_velocity_noise_variance);
            Pnn.Put(3, 3, angular_velocity_noise_variance);
            Pnn.Put(4, 4, angular_velocity_noise_variance);
            Pnn.Put(5, 5, angular_velocity_noise_variance);

            // Form Jacobian dxnew_by_dn
            // Is like this:
            // I * delta_t     0
            // 0               dqnew_by_dOmega

            // Start by zeroing
            MatrixFixed dxnew_by_dn = new MatrixFixed(7, 6);

            dxnew_by_dn.Fill(0.0f);

            // The translation part is just I \Delta t
            MatrixFixed Temp33A = new MatrixFixed(3, 3);

            Temp33A.SetIdentity();
            Temp33A *= delta_t;
            dxnew_by_dn.Update(Temp33A, 0, 0);

            // qnew = q x \Omega \Deltat
            // dqnew_by_d\Omega = dqnew_by_d\Omega\Delta t . d\Omega\Delta t_by_d\Omega

            // Get the first part
            Vector     qRXYZ = xv.Extract(4, 3);
            Quaternion qold  = new Quaternion();

            qold.SetRXYZ(qRXYZ);
            MatrixFixed Temp44A = MatrixFixed.dq3_by_dq1(qold);

            // Use function below for dqwt_by_dOmega
            Vector Omega = new Vector(3);

            Omega.Fill(SD_alpha_component_filter);

            MatrixFixed Temp43A = new MatrixFixed(4, 3);

            dqomegadt_by_domega(new Vector3D(Omega), delta_t, Temp43A);
            // Multiply them together
            MatrixFixed Temp43B = Temp44A * Temp43A;

            // And then plug into Jacobian
            dxnew_by_dn.Update(Temp43B, 3, 3);

            // Finally do Q = dxnew_by_dn . Pnn . dxnew_by_dnT
            QxRES.Update(dxnew_by_dn * Pnn * dxnew_by_dn.Transpose());
        }