public void receiveLearnedMatrix(Matrix <float> p_matrix)
                {
                    if (!MatrixCalc.isSameSize(p_matrix, m_weights))
                    {
                        Debug.LogError("Learned matrix must be same size as non-learned matrix");
                    }

                    m_weights = MatrixCalc.shallowClone(p_matrix);
                }
                public DecisionNet(DInput[] p_inputs, DOutput[] p_outputs, Matrix <float> p_weights)
                {
                    if (!MatrixCalc.isSize(p_weights, p_inputs.Length, p_outputs.Length))
                    {
                        Debug.LogError("Constructing DecisionNet with wrong sized matrix");
                    }

                    m_inputs  = p_inputs;
                    m_outputs = p_outputs;
                    m_weights = MatrixCalc.shallowClone(p_weights);
                }
Ejemplo n.º 3
0
                public NeuralNet(DInput[] p_inputs, DOutput[] p_outputs, Matrix <float>[] p_weights)
                {
                    m_inputs  = p_inputs;
                    m_outputs = p_outputs;

                    m_weights = new Matrix <float> [p_weights.Length];

                    for (int i = 0; i < p_weights.Length; i++)
                    {
                        m_weights[i] = MatrixCalc.shallowClone(p_weights[i]);
                    }
                }
                public DecisionNetDNA(int p_id, DInputFactory <T>[] p_inputs, DOutputFactory <T>[] p_outputs, Matrix <float> p_weights, Range <float> p_mutation_multiplier)
                {
                    if (!MatrixCalc.isSize(p_weights, p_inputs.Length, p_outputs.Length))
                    {
                        Debug.LogError("DecisionNetDNA requires Matrix input size inputs by outputs");
                    }

                    m_id                  = p_id;
                    m_inputs              = ArrayCalc.shallowClone(p_inputs);
                    m_outputs             = ArrayCalc.shallowClone(p_outputs);
                    m_weights             = MatrixCalc.shallowClone(MatrixCalc.columnNormalize(p_weights));
                    m_mutation_multiplier = p_mutation_multiplier;
                }
Ejemplo n.º 5
0
                public NeuralNetDNA <T> Clone()
                {
                    NeuralNetDNA <T> clone = new NeuralNetDNA <T>(m_id, m_inputs, m_outputs, m_mutation_multiplier);

                    clone.m_weights = new Matrix <float> [m_weights.Length];

                    for (int i = 0; i < m_weights.Length; i++)
                    {
                        clone.m_weights[i] = MatrixCalc.shallowClone(m_weights[i]);
                    }

                    return(clone);
                }