Ejemplo n.º 1
0
        public void KendallNullDistributionTest()
        {
            // Pick independent distributions for x and y, which needn't be normal and needn't be related.
            ContinuousDistribution xDistrubtion  = new LogisticDistribution();
            ContinuousDistribution yDistribution = new ExponentialDistribution();
            Random rng = new Random(314159265);

            // generate bivariate samples of various sizes
            foreach (int n in TestUtilities.GenerateIntegerValues(8, 64, 4))
            {
                Sample testStatistics = new Sample();
                ContinuousDistribution testDistribution = null;

                for (int i = 0; i < 128; i++)
                {
                    BivariateSample sample = new BivariateSample();
                    for (int j = 0; j < n; j++)
                    {
                        sample.Add(xDistrubtion.GetRandomValue(rng), yDistribution.GetRandomValue(rng));
                    }

                    TestResult result = sample.KendallTauTest();
                    testStatistics.Add(result.Statistic);
                    testDistribution = result.Distribution;
                }

                TestResult r2 = testStatistics.KolmogorovSmirnovTest(testDistribution);
                Assert.IsTrue(r2.RightProbability > 0.05);

                Assert.IsTrue(testStatistics.PopulationMean.ConfidenceInterval(0.99).ClosedContains(testDistribution.Mean));
                Assert.IsTrue(testStatistics.PopulationVariance.ConfidenceInterval(0.99).ClosedContains(testDistribution.Variance));
            }
        }
Ejemplo n.º 2
0
        public void LinearRegressionVariances()
        {
            // do a set of logistic regression fits
            // make sure not only that the fit parameters are what they should be, but that their variances/covariances are as returned

            Random rng = new Random(314159);

            // define line parameters
            double a0 = 2.0; double b0 = -1.0;

            // do a lot of fits, recording results of each
            FrameTable data = new FrameTable();

            data.AddColumns <double>("a", "va", "b", "vb", "abCov", "p", "dp");

            for (int k = 0; k < 128; k++)
            {
                // we should be able to draw x's from any distribution; noise should be drawn from a normal distribution
                ContinuousDistribution xd = new LogisticDistribution();
                ContinuousDistribution nd = new NormalDistribution(0.0, 2.0);

                // generate a synthetic data set
                BivariateSample sample = new BivariateSample();
                for (int i = 0; i < 12; i++)
                {
                    double x = xd.GetRandomValue(rng);
                    double y = a0 + b0 * x + nd.GetRandomValue(rng);
                    sample.Add(x, y);
                }

                // do the regression
                LinearRegressionResult result = sample.LinearRegression();

                // record result
                UncertainValue p = result.Predict(12.0);
                data.AddRow(new Dictionary <string, object>()
                {
                    { "a", result.Intercept.Value },
                    { "va", result.Parameters.VarianceOf("Intercept") },
                    { "b", result.Slope.Value },
                    { "vb", result.Parameters.VarianceOf("Slope") },
                    { "abCov", result.Parameters.CovarianceOf("Slope", "Intercept") },
                    { "p", p.Value },
                    { "dp", p.Uncertainty }
                });
            }

            // variances of parameters should agree with predictions
            Assert.IsTrue(data["a"].As <double>().PopulationVariance().ConfidenceInterval(0.99).ClosedContains(data["va"].As <double>().Median()));
            Assert.IsTrue(data["b"].As <double>().PopulationVariance().ConfidenceInterval(0.99).ClosedContains(data["vb"].As <double>().Median()));
            Assert.IsTrue(data["a"].As <double>().PopulationCovariance(data["b"].As <double>()).ConfidenceInterval(0.99).ClosedContains(data["abCov"].As <double>().Median()));

            // variance of prediction should agree with claim
            Assert.IsTrue(data["p"].As <double>().PopulationStandardDeviation().ConfidenceInterval(0.99).ClosedContains(data["dp"].As <double>().Median()));
        }
Ejemplo n.º 3
0
        public void BivariateLinearRegression()
        {
            // do a set of logistic regression fits
            // make sure not only that the fit parameters are what they should be, but that their variances/covariances are as returned

            Random rng = new Random(314159);

            // define logistic parameters
            double a0 = 2.0; double b0 = -1.0;

            // keep track of sample of returned a and b fit parameters
            BivariateSample ps = new BivariateSample();

            // also keep track of returned covariance estimates
            // since these vary slightly from fit to fit, we will average them
            double caa = 0.0;
            double cbb = 0.0;
            double cab = 0.0;

            // also keep track of test statistics
            Sample fs = new Sample();

            // do 100 fits
            for (int k = 0; k < 100; k++)
            {
                // we should be able to draw x's from any distribution; noise should be drawn from a normal distribution
                Distribution xd = new LogisticDistribution();
                Distribution nd = new NormalDistribution(0.0, 2.0);

                // generate a synthetic data set
                BivariateSample s = new BivariateSample();
                for (int i = 0; i < 25; i++)
                {
                    double x = xd.GetRandomValue(rng);
                    double y = a0 + b0 * x + nd.GetRandomValue(rng);
                    s.Add(x, y);
                }

                // do the regression
                FitResult r = s.LinearRegression();

                // record best fit parameters
                double a = r.Parameter(0).Value;
                double b = r.Parameter(1).Value;
                ps.Add(a, b);

                // record estimated covariances
                caa += r.Covariance(0, 0);
                cbb += r.Covariance(1, 1);
                cab += r.Covariance(0, 1);

                // record the fit statistic
                fs.Add(r.GoodnessOfFit.Statistic);
                Console.WriteLine("F={0}", r.GoodnessOfFit.Statistic);
            }

            caa /= ps.Count;
            cbb /= ps.Count;
            cab /= ps.Count;

            // check that mean parameter estimates are what they should be: the underlying population parameters
            Assert.IsTrue(ps.X.PopulationMean.ConfidenceInterval(0.95).ClosedContains(a0));
            Assert.IsTrue(ps.Y.PopulationMean.ConfidenceInterval(0.95).ClosedContains(b0));

            Console.WriteLine("{0} {1}", caa, ps.X.PopulationVariance);
            Console.WriteLine("{0} {1}", cbb, ps.Y.PopulationVariance);

            // check that parameter covarainces are what they should be: the reported covariance estimates
            Assert.IsTrue(ps.X.PopulationVariance.ConfidenceInterval(0.95).ClosedContains(caa));
            Assert.IsTrue(ps.Y.PopulationVariance.ConfidenceInterval(0.95).ClosedContains(cbb));
            Assert.IsTrue(ps.PopulationCovariance.ConfidenceInterval(0.95).ClosedContains(cab));

            // check that F is distributed as it should be
            Console.WriteLine(fs.KolmogorovSmirnovTest(new FisherDistribution(2, 48)).LeftProbability);
        }
Ejemplo n.º 4
0
        public void BivariateLinearRegression()
        {
            // do a set of logistic regression fits
            // make sure not only that the fit parameters are what they should be, but that their variances/covariances are as returned

            Random rng = new Random(314159);

            // define line parameters
            double a0 = 2.0; double b0 = -1.0;

            // keep track of sample of returned a and b fit parameters
            BivariateSample pSample = new BivariateSample();

            // also keep track of returned covariance estimates
            // since these vary slightly from fit to fit, we will average them
            double caa = 0.0;
            double cbb = 0.0;
            double cab = 0.0;

            // Record predictions for a new point
            double x0      = 12.0;
            Sample ySample = new Sample();
            double ySigma  = 0.0;

            // do 100 fits
            for (int k = 0; k < 128; k++)
            {
                // we should be able to draw x's from any distribution; noise should be drawn from a normal distribution
                ContinuousDistribution xd = new LogisticDistribution();
                ContinuousDistribution nd = new NormalDistribution(0.0, 2.0);

                // generate a synthetic data set
                BivariateSample sample = new BivariateSample();
                for (int i = 0; i < 16; i++)
                {
                    double x = xd.GetRandomValue(rng);
                    double y = a0 + b0 * x + nd.GetRandomValue(rng);
                    sample.Add(x, y);
                }

                // do the regression
                LinearRegressionResult result = sample.LinearRegression();

                // test consistancy
                Assert.IsTrue(result.Intercept == result.Parameters[0].Estimate);
                Assert.IsTrue(result.Intercept.Value == result.Parameters.Best[0]);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(result.Intercept.Uncertainty, Math.Sqrt(result.Parameters.Covariance[0, 0])));
                Assert.IsTrue(result.Slope == result.Parameters[1].Estimate);
                Assert.IsTrue(result.Slope.Value == result.Parameters.Best[1]);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(result.Slope.Uncertainty, Math.Sqrt(result.Parameters.Covariance[1, 1])));
                Assert.IsTrue(TestUtilities.IsNearlyEqual(result.R.Statistic, sample.CorrelationCoefficient));

                // record best fit parameters
                double a = result.Parameters.Best[0];
                double b = result.Parameters.Best[1];
                pSample.Add(a, b);

                // record estimated covariances
                caa += result.Parameters.Covariance[0, 0];
                cbb += result.Parameters.Covariance[1, 1];
                cab += result.Parameters.Covariance[0, 1];

                UncertainValue yPredict = result.Predict(x0);
                ySample.Add(yPredict.Value);
                ySigma += yPredict.Uncertainty;

                double SST = 0.0;
                foreach (double y in sample.Y)
                {
                    SST += MoreMath.Sqr(y - sample.Y.Mean);
                }
                Assert.IsTrue(TestUtilities.IsNearlyEqual(SST, result.Anova.Total.SumOfSquares));

                double SSR = 0.0;
                foreach (double z in result.Residuals)
                {
                    SSR += z * z;
                }
                Assert.IsTrue(TestUtilities.IsNearlyEqual(SSR, result.Anova.Residual.SumOfSquares));
            }

            caa    /= pSample.Count;
            cbb    /= pSample.Count;
            cab    /= pSample.Count;
            ySigma /= pSample.Count;

            // check that mean parameter estimates are what they should be: the underlying population parameters
            Assert.IsTrue(pSample.X.PopulationMean.ConfidenceInterval(0.95).ClosedContains(a0));
            Assert.IsTrue(pSample.Y.PopulationMean.ConfidenceInterval(0.95).ClosedContains(b0));

            Console.WriteLine("{0} {1}", caa, pSample.X.PopulationVariance);
            Console.WriteLine("{0} {1}", cbb, pSample.Y.PopulationVariance);

            // check that parameter covarainces are what they should be: the reported covariance estimates
            Assert.IsTrue(pSample.X.PopulationVariance.ConfidenceInterval(0.95).ClosedContains(caa));
            Assert.IsTrue(pSample.Y.PopulationVariance.ConfidenceInterval(0.95).ClosedContains(cbb));
            Assert.IsTrue(pSample.PopulationCovariance.ConfidenceInterval(0.95).ClosedContains(cab));

            // Check that the predicted ys conform to the model and the asserted uncertainty.
            Assert.IsTrue(ySample.PopulationMean.ConfidenceInterval(0.95).ClosedContains(a0 + x0 * b0));
            //Assert.IsTrue(ySample.PopulationStandardDeviation.ConfidenceInterval(0.95).ClosedContains(ySigma));
        }