public void SetStats(LoadedMarketData data)
 {
     this.open       = data.GetData(MarketDataType.Open);
     this.close      = data.GetData(MarketDataType.Close);
     this.high       = data.GetData(MarketDataType.High);
     this.low        = data.GetData(MarketDataType.Low);
     this.bodyTop    = Math.Max(this.open, this.close);
     this.bodyBottom = Math.Min(this.open, this.close);
 }
        public void Loader()
        {
            IMarketLoader loader = new YahooFinanceLoader();
            var           from   = new DateTime(2008, 8, 4);
            var           to     = new DateTime(2008, 8, 5);
            ICollection <LoadedMarketData> list = loader.Load(new TickerSymbol("aapl"), null, from, to);

            IEnumerator <LoadedMarketData> itr = list.GetEnumerator();

            itr.MoveNext();
            LoadedMarketData data = itr.Current;

            Assert.AreEqual(160, (int)data.GetData(MarketDataType.Close));
            itr.MoveNext();
            data = itr.Current;
            Assert.AreEqual(153, (int)data.GetData(MarketDataType.Close));
        }
Ejemplo n.º 3
0
        /// <summary>
        /// Called to load training data for a company.  This is how the training data is actually created.
        /// To prepare input data for recognition use the CreateData method.  The training set will be
        /// added to.  This allows the network to learn from multiple companies if this method is called
        /// multiple times.
        /// </summary>
        /// <param name="symbol">The ticker symbol.</param>
        /// <param name="training">The training set to add to.</param>
        /// <param name="from">Beginning date</param>
        /// <param name="to">Ending date</param>
        public void LoadCompany(String symbol, BasicMLDataSet training, DateTime from, DateTime to)
        {
            IMarketLoader          loader     = new YahooFinanceLoader();
            TickerSymbol           ticker     = new TickerSymbol(symbol);
            IList <MarketDataType> dataNeeded = new List <MarketDataType>();

            dataNeeded.Add(MarketDataType.AdjustedClose);
            dataNeeded.Add(MarketDataType.Close);
            dataNeeded.Add(MarketDataType.Open);
            dataNeeded.Add(MarketDataType.High);
            dataNeeded.Add(MarketDataType.Low);
            List <LoadedMarketData> results = (List <LoadedMarketData>)loader.Load(ticker, dataNeeded, from, to);

            results.Sort();

            for (int index = PredictWindow; index < results.Count - EvalWindow; index++)
            {
                LoadedMarketData data = results[index];

                // determine bull or bear position, or neither
                bool bullish = false;
                bool bearish = false;

                for (int search = 1; search <= EvalWindow; search++)
                {
                    LoadedMarketData data2        = results[index + search];
                    double           priceBase    = data.GetData(MarketDataType.AdjustedClose);
                    double           priceCompare = data2.GetData(MarketDataType.AdjustedClose);
                    double           diff         = priceCompare - priceBase;
                    double           percent      = diff / priceBase;
                    if (percent > BullPercent)
                    {
                        bullish = true;
                    }
                    else if (percent < BearPercent)
                    {
                        bearish = true;
                    }
                }

                IMLDataPair pair = null;

                if (bullish)
                {
                    pair = CreateData(results, index, true);
                }
                else if (bearish)
                {
                    pair = CreateData(results, index, false);
                }

                if (pair != null)
                {
                    training.Add(pair);
                }
            }
        }
 public void SetStats(LoadedMarketData data)
 {
     this.open = data.GetData(MarketDataType.Open);
     this.close = data.GetData(MarketDataType.Close);
     this.high = data.GetData(MarketDataType.High);
     this.low = data.GetData(MarketDataType.Low);
     this.bodyTop = Math.Max(this.open, this.close);
     this.bodyBottom = Math.Min(this.open, this.close);
 }